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Remark 0.1 This is the third part for my 2022 fall semester ODE course. The third
part contains material from Chapter 7 (linear system of ODE) of the book.

Remark 0.2 This notes is based on the textbook "Elementary Di¤erential Equations & Bound-
ary Value Problems, 10th Edition" by Boyce & DiPrima. However, I will not follow the
book exactly. Lecture notes will be given to you via email whenever necessary.

Chapter 7.

System of �rst order linear (homogeneous) equations with constant co-
e¢ cients.

Any scalar equation can be written as a �rst order system.

Consider a second order linear equation with constant coe¢ cients (for simplicity, we make the
coe¢ cient of x00 (t) equal to 1):

ax00 (t) + bx0 (t) + cx (t) = 0; t 2 (�1;1) ; (1)

where a 6= 0; b; c are constants. We already know how to solve it by looking at the roots of its
characteristic polynomial equation. However, there is another way to solve it, which has the advan-
tage of applying the theory of linear algebra to study the properties of the solution x (t) : Letting
y (t) = x0 (t) ; equation (1) can be written as

y0 (t) = � c
a
x (t)� b

a
y (t) ; a 6= 0

which is, of course, not self-contained for the function y (t) : But if we include the equation
x0 (t) = y (t) ; then the system of equations(

x0 (t) = y (t)

y0 (t) = � c
a
x (t)� b

a
y (t) ; t 2 (�1;1)

(2)

becomes self-contained for the vector-valued function v (t) = (x (t) ; y (t)) (here we view v (t)
as a column vector): In terms of vector and matrix notation, we can write (2) as:

d

dt

�
x
y

�
=

�
0 1
� c
a
� b
a

��
x
y

�
(same as

dv

dt
= Av; A =

�
0 1
� c
a
� b
a

�
). (3)

We call (3) a 2 � 2 system of �rst order linear (homogeneous) equation with constant
coe¢ cients.

Notation 0.3 In this chapter we use M (n) to denote the space of all n� n real matrices.

Lemma 0.4 Let A 2M (2) be the matrix given in (3). If x (t) satis�es (1) on t 2 (�1;1) ; then
the vector-valued function v (t) = (x (t) ; y (t)) ; where y (t) = x0 (t) ; satis�es (3) on t 2 (�1;1) :
On the other hand, if a vector-valued function v (t) = (x (t) ; y (t)) satis�es (3) on t 2 (�1;1) ; then
y (t) = x0 (t) and x (t) satis�es (1) on t 2 (�1;1). Moreover, the eigenvalues (see De�nition 0.8
below) of A are exactly the two roots of the characteristic polynomial equation of the ODE
(1).
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Proof. This is a simple veri�cation. �

Another result similar to Lemma 0.4 is the following:

Lemma 0.5 If we have a 2� 2 linear system of the form

d

dt

�
x
y

�
= A

�
x
y

�
; A =

�
a b
c d

�
2M (2) ; (4)

then x (t) will satisfy the equation

x00 (t)� (TrA)x0 (t) + (detA)x (t) = 0; where TrA = a+ d; detA = ad� bc (5)

and the same for y (t) : Moreover, the two roots r1; r2 of the characteristic polynomial equation of
the ODE (5) are the same as the two eigenvalues of the matrix A:

Remark 0.6 (Be careful.) Assume r1 and r2 are the two roots of the characteristic equation

r2 � (TrA) r + detA = 0:

The above lemma does not imply that for any constants c1; c2; ~c1; ~c2; the function�
x (t)
y (t)

�
=

�
c1e

r1t + c2e
r2t

~c1e
r1t + ~c2e

r2t

�
; t 2 (�1;1)

is a solution of (4). Since x (t) and y (t) are related by the system of ODE (4), the constants
c1; c2 and the constants ~c1; ~c2 must be related. Their relation will involve the eigenvalues and
eigenvectors of the matrix A:

Proof. By (4), we have (
x0 (t) = ax (t) + by (t)

y0 (t) = cx (t) + dy (t)

and so

x00 (t) = ax0 (t) + by0 (t) = ax0 (t) + b

�
cx (t) + d y (t)|{z}

�
= ax0 (t) + bcx (t) + d by (t)| {z } = ax0 (t) + bcx (t) + d

�
x0 (t)� ax (t)| {z }

�
;

which gives (5). Similarly, one can check that y (t) also satis�es the equation

y00 (t)� (a+ d) y0 (t) + (ad� bc) y (t) = 0:

�

Example 0.7 Use the idea of Lemma 0.5 to �nd the general solution of the equation

d

dt

�
x
y

�
= A

�
x
y

�
; where A =

�
2 4
1 �1

�
:
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Solution:

The system is the same as (
x0 (t) = 2x (t) + 4y (t)

y0 (t) = x (t)� y (t)
(6)

and we know that x (t) satis�es the equation

x00 (t)� x0 (t)� 6x (t) = 0

and the same for y (t) : The characteristic equation for the ODE is (r � 3) (r + 2) = 0; which has
two roots r = 3; �2; hence we have (

x (t) = c1e
3t + c2e

�2t

y (t) = ~c1e
3t + ~c2e

�2t

for some constants c1; c2; ~c1; ~c2: However, since x (t) and y (t) are related by the system of equations
(6), the constants ~c1; ~c2 and the constants c1; c2 must be related. To see this, by the �rst equation
in (6), we have

y (t) =
x0 (t)� 2x (t)

4
=
[3c1e

3t � 2c2e�2t]� 2 [c1e3t + c2e�2t]
4

=
c1
4
e3t � c2e�2t;

which implies
~c1 =

c1
4
; ~c2 = �c2:

One can verify that, for any constants c1; c2; the function�
x (t)
y (t)

�
= c1

�
1
1
4

�
e3t + c2

�
1
�1

�
e�2t

is a solution of (6) de�ned on t 2 (�1;1) : Moreover, we see that the two numbers 3; �2 are
the eigenvalues of the matrix A and the two vectors v1 = (1; 1=4) ; v2 = (1;�1) are eigenvectors of
A corresponding to the eigenvalues 3; �2: �

Eigenvalues and eigenvectors.

The advantage of rewriting the single equation (1) as the system (3) is that we can use the proper-
ties of the matrix A (like eigenvalues and eigenvectors) to study the properties of the solution
x (t) and its derivative x0 (t) (same as y (t)). That is to say, we can use linear algebra to help us
understand the behavior of x (t) and x0 (t) as t! �1:
We �rst recall the de�nition:

De�nition 0.8 Let A 2 M (n) (M (n) is the space of all n � n real matrices). We say � 2 R is
a real eigenvalue of A if there is a nonzero real vector v 6= 0 2 Rn such that Av = �v. In
such a case, the vector v is called a real eigenvector of A corresponding to the real eigenvalue
�: Similarly, we say � 2 C is a complex eigenvalue of A (here � has nonzero imaginary part)
if there is a nonzero complex vector v 6= 0 2 Cn such that Av = �v. The vector v is called a
complex eigenvector of A corresponding to the complex eigenvalue �: Note that a real matrix
can have a complex eigenvalue.

Remark 0.9 Note that if � 2 C is a complex eigenvalue of A 2 M (n) with complex eigenvector
v 6= 0 2 Cn, then by the identity

Av = Av = �v = �v (i.e. Av = �v),
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we see that � 2 C is also a complex eigenvalue with corresponding complex eigenvector v: Moreover,
if we write � = � + i�; �; � 6= 0 2 R; and write v = u + iw; u; w 6= 0 2 Rn; then by the identity
A (u+ iw) = (�+ i�) (u+ iw) we have(

Au = �u� �w

Aw = �u+ �w:
(7)

In case n = 2; we can write (7) as the matrix identity

A (u;w) = (Au;Aw) = (�u� �w; �u+ �w) = (u;w)
�
� �
�� �

�
;

where (u;w) 2M (2) with u as the �rst column and w as the second column.

From linear algebra, we know the following important fact:

Lemma 0.10 (1) : Let A 2 M (n) : � is an eigenvalue (real or complex) of A if and only if it
satis�es the equation

det (A� �I) = 0; (8)

where I is the n� n identity matrix. (2) : If � 2 R is a real eigenvalue of A; then the set

ker (A� �I) = fv 2 Rn : Av = �v (include v = 0)g � Rn

is a vector subspace of Rn with dimension at least 1 (call it the eigenspace of A corresponding
to � 2 R). Similarly, if � 2 C is a complex eigenvalue of A; then the set

ker (A� �I) = fv 2 Cn : Av = �v (include v = 0)g � Cn

is a vector subspace of Cn with dimension at least 1 (call it the eigenspace of A corresponding
to � 2 C).

Remark 0.11 The equation det (A� �I) = 0 for �nding eigenvalues � of A is also called the
characteristic equation of the matrix A:

0.0.1 System of �rst order linear equations with constant coe¢ cients.

We de�ne the following:system of �rst order linear (homogeneous) equation with constant
coe¢ cients.

De�nition 0.12 Let A 2M (n) be an n� n real matrix. The system of equation

x0 (t) =
dx

dt
(t) = Ax (t) ; x = x (t) = (x1 (t) ; ::: ; xn (t)) (column vector) 2 Rn (9)

is called a system of �rst order linear equation with constant coe¢ cients. A real solution
(or just call it a solution) of (9) is a vector-valued function x (t) = (x1 (t) ; ::: ; xn (t)) 2 Rn
de�ned at least on some open interval t 2 I: The goal is to �nd all possible real solutions of (9).

Remark 0.13 When we say x (t) is a solution of (9), we always mean that it is a real solution
unless otherwise stated.

Remark 0.14 To describe the general solution x (t) of (9), we need n arbitrary real constants
c1; :::; cn; which can be viewed as one arbitrary constant c = (c1; ::: ; cn) 2 Rn (since (9) is a �rst
order equation in Rn). To determine the constant c 2 Rn uniquely, we need an initial condition
x (t0) = x0 2 Rn: See Theorem 0.19 below.
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Remark 0.15 Any point x0 2 Rn satisfying Ax0 = 0 is an equilibrium solution of (9), i.e. the
function x (t) � x0 is a solution of x0 (t) = Ax (t) de�ned on t 2 (�1;1) :

Remark 0.16 (Important.) Our goal is to �nd all possible real solutions (general real
solutions) of (9). If there is a complex solution x (t) of (9), then its real part and imaginary
part are both real solutions of (9).

Lemma 0.17 If x (t) and y (t) are both real solutions to (9) on (�1;1) ; then their linear com-
bination

z (t) = c1x (t) + c2y (t) ; t 2 I
is also a solution of (9) on (�1;1) : Here c1; c2 are two arbitrary real constants.

Remark 0.18 This says that the solution space of (9) has the structure of a vector space.

Proof. This is obvious. �

We have the following existence and uniqueness property for equation (9):

Theorem 0.19 (Existence and uniqueness property.) Any solution to (9) is de�ned on t 2
(�1;1) : Moreover, if (9) has an initial condition of the form

x (t0) = x0 2 Rn; (10)

then there exists a unique solution x (t) ; t 2 (�1;1) ; satisfying x0 (t) = Ax (t) for all t 2
(�1;1) and x (t0) = x0:

Proof. You can �nd the proof in some ODE textbook. �

A preliminary result of the system (9) is the following simple but important fact:

Lemma 0.20 If � is a real eigenvalue of A 2 M (n) with corresponding real eigenvector v 6= 0 2
Rn; then the function

x (t) = e�tv 2 Rn; t 2 (�1;1) (11)

is a real solution of x0 = Ax de�ned on (�1;1) :

Proof. We have Av = �v: Hence

dx

dt
(t) =

d

dt

�
e�tv

�
= �e�tv = A

�
e�tv

�
= Ax (t) ; t 2 (�1;1) :

�

Remark 0.21 (Important.) If � = � + i� 2 C; � 6= 0; is a complex eigenvalue of A 2 M (n)
with corresponding complex eigenvector v = u+ iw 2 Cn; where u; w 6= 0 2 Rn; then the function

x (t) = e�tv = e(�+i�)t (u+ iw)| {z } 2 Cn; t 2 (�1;1)

is a complex solution of (9) de�ned on (�1;1) : This is because we have the same identities as
in the real case:

x0 (t) =
d

dt

�
e�tv

�
= �e�tv = e�t�v = e�t (Av) = A

�
e�tv

�
= Ax (t) :
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We can the real part x1 (t) and imaginary part x2 (t) of x (t) to get the following two real
solutions of x0 = Ax :(

x1 (t) = e
�t [(cos �t)u� (sin �t)w] ; u; w 2 Rn; t 2 (�1;1)

x2 (t) = e
�t [(sin �t)u+ (cos �t)w] ; u; w 2 Rn; t 2 (�1;1) :

(12)

Note that the complex function x (t) = e�tv is also a complex solution, but it will produce the same
real solutions as in (12). To see this, we note that

x (t) = e�tv = e(��i�)t (u� iw) = e�t [(cos �t)� i (sin �t)] (u� iw)
= e�t [(cos �t)u� i (cos �t)w � i (sin �t)u� (sin �t)w]
= e�t [(cos �t)u� (sin �t)w] + ie�t [� (sin �t)u� (cos �t)w] ; u; w 2 Rn; t 2 (�1;1) :

To go on, we need some results from linear algebra:

Lemma 0.22 If A 2 M (n) has n distinct real eigenvalues �1; :::; �n with corresponding
nonzero real eigenvectors v1; :::; vn; then v1; :::; vn are linearly independent in Rn (hence
they form a basis of Rn).

Proof. We �rst claim that v1 and v2 are independent. Otherwise, we would have v1 = cv2 for some
constant c 6= 0: Hence we get (applying A onto it) �1v1 = c�2v2: But we also have �1v1 = c�1v2 and
so c�2v2 = c�1v2: This will force �1 = �2; impossible. Hence v1 and v2 are independent. Similarly
if we have v3 = �v1 + �v2 with �2 + �2 6= 0; then(

�3v3 = ��1v1 + ��2v2

�3v3 = ��3v1 + ��3v2;

which implies

� (�1 � �3) v1 + �(�2 � �3)v2 = 0; �1 � �3 6= 0; �2 � �3 6= 0;

and so � = � = 0; a contradiction. Thus v3 does not lie on the plane spanned by v1 and v2; hence
v1; v2; v3 are independent. Keep going and use induction argument to conclude that v1; :::; vn are
linearly independent. �

Lemma 0.23 If A 2 M (n) has n distinct real eigenvalues �1; :::; �n with corresponding
nonzero real eigenvectors v1; :::; vn; then

P�1AP = D; (13)

where P = (v1; :::; vn) (each vi is a column vector) and D = diag (�1; :::; �n) is the diagonal
matrix with diagonal elements �1; :::; �n: In such a case, we can diagonalize the matrix A.

Proof. Note that we have the identity AP = PD (explain it) and detP 6= 0; hence P�1 exists and
we obtain P�1AP = D. �

Remark 0.24 (Important.) Compare the di¤erence between PD and DP: In general, we do not
have PD = DP even if D is a diagonal matrix.
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The case when A 2M (n) has n distinct real eigenvalues.

Lemma 0.25 If A 2M (n) has n distinct real eigenvalues �1; :::; �n with corresponding nonzero
real eigenvectors v1; :::; vn; then if x (t) 2 Rn is a solution of (9) on (�1;1) ; it can be expressed
as

x (t) = c1e
�1tv1 + � � �+ cne�ntvn; t 2 (�1;1) (14)

for some real constants c1; :::; cn: Therefore, the general solution of the linear system x0 (t) =
Ax (t) in this case (i.e., A has n distinct real eigenvalues) is given by (14). In terms of matrix
notation, one can express (14) as

x (t) = PD (t)

0B@ c1
...
cn

1CA ; where P = (v1; :::; vn) (each vi is a column vector).

and D (t) is the diagonal matrix diag
�
e�1t; :::; e�nt

�
; t 2 (�1;1).

Proof. Since v1; :::; vn is a basis of Rn; at any time t 2 (�1;1) one can decompose x (t) as

x (t) = a1 (t) v1 + � � �+ an (t) vn

for some coe¢ cient functions a1 (t) ; :::; an (t) : We now have(
x0 (t) = a01 (t) v1 + � � �+ a0n (t) vn

Ax (t) = �1a1 (t) v1 + � � �+ �nan (t) vn:

This implies a01 (t) = �1a1 (t) ; :::; a
0
n (t) = �nan (t) : Hence there exist constants c1; :::; cn such that

a1 (t) = c1e
�1t; ::::; an (t) = cne

�nt; t 2 (�1;1) :

The proof is done. �

Remark 0.26 (Important.) In case there is a initial condition x (0) = x0; then one just solve
for c1; :::; cn so that

c1v1 + � � �+ cnvn = x0:
In matrix form we have (note that the matrix P is invertible and D (0) = I)

x (0) = PD (0)

0B@ c1
...
cn

1CA = P

0B@ c1
...
cn

1CA = x0 (column vector) or

0B@ c1
...
cn

1CA = P�1x0:

Hence the unique solution of the equation x0 = Ax; x (0) = x0; is given by

x (t) = PD (t)

0B@ c1
...
cn

1CA = PD (t)P�1x0| {z }; x (0) = x0:

We summarize the above result as a theorem and prove it using a di¤erent "diagonalization"
method.
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Theorem 0.27 Assume A 2M (n) has n distinct real eigenvalues �1; :::; �n with corresponding
eigenvectors v1; :::; vn and let P = (v1; :::; vn) : Then the unique solution to the initial value
problem

x0 (t) = Ax; x (0) = x0 (15)

is given by
x (t) = PD (t)P�1| {z }x0; t 2 (�1;1) (16)

where D (t) is the diagonal matrix diag
�
e�1t; :::; e�nt

�
:

Remark 0.28 In case the initial condition is x (t0) = x0; where t0 6= 0; then the unique solution is

x (t) = PD (t)D�1 (t0)P
�1| {z }x0; t 2 (�1;1) : (17)

Proof. (Diagonalization method; change of variables.) For convenience, we let D be the
diagonal matrix diag (�1; :::; �n) : Assume x (t) 2 Rn is a solution to (15). There is a unique
function y (t) 2 Rn such that

x (t) = Py (t) ; t 2 (�1;1) ; (just let y (t) = P�1x (t) ),

i.e. in the above we do the linear change of variables x = Py: The function y (t) will also satisfy
an ODE. We now have (note that AP = PD since Avi = �ivi for each i)

x0 (t)| {z } = Py0 (t) ; Ax (t)| {z } = A (Py (t)) = (AP )y (t) = (PD)y (t) ;
which gives

Py0 (t) = (PD)y (t) ; i.e., y0 (t) = P�1AP| {z }y (t) = Dy (t) : (18)

Therefore the function y (t) satis�es the initial value problem

y0 (t) = Dy (t) ; y (0) = P�1x0; (19)

that is, the system for y (t) is now decoupled with (recall that we need to �nd eigenvectors
v1; :::; vn in order to do this change of variables)

dy1
dt
= �1y1;

dy2
dt

= �2y2; :::: ;
dyn
dt

= �nyn (20)

and it is given by

y (t) = D (t)y (0)|{z} = D (t)
�
P�1x0| {z }

�
= D (t)P�1x0:

Thus
x (t) = Py (t) = PD (t)P�1| {z }x0

and the proof is done. �

Example 0.29 Consider the 2� 2 linear system

d

dt

�
x (t)
y (t)

�
=

�
3 �1
4 �2

��
x (t)
y (t)

�
(21)

The coe¢ cients matrix has �1 = 2; �2 = �1; v1 = (1; 1) ; v2 = (1; 4) : Thus

P =

�
1 1
1 4

�
and P�1 =

1

3

�
4 �1
�1 1

�
8



and

x (t) = PD (t)P�1x0 =
1

3

�
1 1
1 4

��
e2t 0
0 e�t

��
4 �1
�1 1

�
x0

=
1

3

�
4e2t � e�t �e2t + e�t
4e2t � 4e�t �e2t + 4e�t

�
x0; x (0) = x0

is the solution of (21) with initial data x0: One can also use the general solution formula

x (t) = c1e
2t

�
1
1

�
+ c2e

�t
�
1
4

�
and solve for c1; c2 satisfying the system

x (0) = c1

�
1
1

�
+ c2

�
1
4

�
= x0:

2� 2 linear system with constant coe¢ cients.

In this section we want to �nd the general solution of the simple 2 � 2 system with constant
coe¢ cients:

x0 = Ax; A =

�
a b
c d

�
2M (2) : (22)

We already know its general solution if A has two distinct real eigenvalues. For other cases, we
can use the result of linear algebra to help us.
We �rst recall the following general fact from linear algebra:

Lemma 0.30 Let A; P 2M (n) be two real matrices and P is invertible. Then the two matrices
A and P�1AP have the same eigenvalues. If � is an eigenvalue (� can be real or complex) of
A with corresponding eigenvector v 6= 0 (v can be real eigenvector or complex eigenvector),
then � is an eigenvalue of P�1AP with corresponding eigenvector P�1v: Conversely, if � is an
eigenvalue (� can be real or complex) of P�1AP with corresponding eigenvector v 6= 0 (v can
be real eigenvector or complex eigenvector), then � is an eigenvalue of A with corresponding
eigenvector Pv:

Proof. Assume � is an eigenvalue of A with corresponding eigenvector v: We have

Av = �v; v 6= 0:

Since P 2 M (n) is invertible, there is a unique vector w 6= 0 such that Pw = v: Hence the
above becomes

APw = �Pw = P (�w) ;

which implies �
P�1AP

�
w = �w; w 6= 0:

The above identity says that � is an eigenvalue of P�1AP with corresponding eigenvector w = P�1v:
Conversely, if � is an eigenvalue of P�1AP with corresponding eigenvector v: We have�

P�1AP
�
v = �v; v 6= 0;

which gives
A (Pv) = P (�v) = � (Pv) ; Pv 6= 0:

Hence � is an eigenvalue of A with corresponding eigenvector Pv: �
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Lemma 0.31 If A 2 M (2) ; then there is an invertible real matrix P such that P�1AP has one
of the forms (also known as Jordan canonical form)�

� 0
0 �

�
;

�
� 1
0 �

�
;

�
� �
�� �

�
; (23)

for some real numbers �; �; �; � with � 6= 0:

Proof.
Case 1: �1 6= �2; �1; �2 2 R:

In this case we have the �rst form in (23) with P = (v1; v2) 2M (2) :

Case 2: �1 = �2 (denote it as �); � 2 R:

In this case, there exists a nonzero vector v1 2 R2 such that Av1 = �v1: Let K be the subspace
of R2 given by

K =
�
v 2 R2 : Av = �v

	
= ker (A� �I) ; v1 2 W: (24)

If K = R2; then A = �I and for any invertible real matrix P we have

P�1AP =

�
� 0
0 �

�
: (25)

Hence we assume that dimK = 1 and choose any nonzero vector w 2 R2 which is independent
to v1: Then we have

Aw = �v1 + �w for some number � 6= 0; �:
Note that if � = 0; we will get a contradiction (if � = 0; we get Aw = �w; which implies � = � and
we have two independent eigenvectors v1 and w; this gives a contradiction since now dimK = 1).
Hence � 6= 0: As A has repeated eigenvalue �; the number � must be equal to �: To see this,
note that fv1; wg are independent and we have

A (v1; w) = (v1; w)

�
� �
0 �

�
; � 6= 0;

which gives

P�1AP =

�
� �
0 �

�
; where P = (v1; w) : (26)

The above implies that P�1AP has eigenvalues �; �: By Lemma 0.30, A also has eigenvalues
�; �: Hence � must be equal to �; i.e. � = �: As a conclusion, we have

Aw = �v1 + �w (same as (A� �I)w = �v1), � 6= 0: (27)

Now if we choose
v2 =

w

�
; � 6= 0;

we will get
Av2 = v1 + �v2 (same as (A� �I) v2 = v1): (28)

This gives the second case if we let

P = (v1; v2) 2M (2) (v1; v2 are column vectors). (29)
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Remark 0.32 (Quick way to reduce A into Jordan canonical form in Case 2.) Based on
the above proof, if dimker (A� �I) = 1; then we can �nd v2 6= 0 satisfying(

(A� �I) v1 = 0; v1 6= 0 is eigenvector,

(A� �I) v2 = v1:
(30)

Moreover, fv1; v2g is automatically independent and is a basis of R2: Using the basis fv1; v2g ;
we have

P�1AP =

�
� 1
0 �

�
:

Remark 0.33 (Important.) In the textbook (see p. 433), the vector v2 in (28) is called a gener-
alized eigenvector for the map A : R2 ! R2:Note that the map A��I : R2 ! R2 maps the whole
R2 onto the line L generated by v1 (L is the eigenspace corresponding to �) and then maps L onto
0 (draw a picture here). This is because any vector u 2 R2 can be written as u = sv1+ tv2 for some
s; t 2 R; and then

(A� �I)u = (A� �I) (sv1 + tv2) = (A� �I) (tv2) = tv1

and furthermore
(A� �I)2 u = (A� �I) (tv1) = 0; 8 u 2 R2:

Case 3: �1 = �+ i�; �2 = �� i�; �; � 2 R; � > 0:

Let v1 = u+ iw; v2 = u� iw; u; w 2 R2; w 6= 0, be complex eigenvectors corresponding to
�1 and �2 respectively. Since a complex eigenvalue cannot have a real eigenvector, we must
have w 6= 0 and (

Au = �u� �w;

Aw = �u+ �w; w 6= 0;
(31)

which also implies that u; w are linearly independent in R2: To see this, we �rst note that u 6=
0: Otherwise, we have 0 = ��w; which is impossible since � > 0 and w 6= 0: Next, if u is amultiple
of w; say u = �w for some � 6= 0; we will have

A�w = ��w � �w; i.e. Aw =
�
�� �

�

�
w; � 6= 0; w 6= 0; � > 0;

which says thatA has a real eigenvalue ���=�; a contradiction again. Now choose P = (u;w) ; which
is invertible, and (31) implies

A (u;w) = (u;w)

�
� �
�� �

�
; P�1AP =

�
� �
�� �

�
; (32)

which gives the third case. �

Remark 0.34 (Important.) Note that the matrix

J :=

�
� �
�� �

�
assume JTJ = (�2 + �2) I: Therefore, J is like an orthogonal matrix but with a dilation
by
p
�2 + �2 (by de�nition, an orthogonal matrix M satis�es MTM = I). One can also write

J as

J =
p
�2 + �2

0@ �p
�2+�2

�p
�2+�2

� �p
�2+�2

�p
�2+�2

1A =
p
�2 + �2

�
cos � sin �
� sin � cos �

�
:

11



We see that it is a clockwise rotation with angle �; together with a dilation by
p
�2 + �2 (explain

this). On the other hand, the matrix �
� ��
� �

�
corresponds to a counterclockwise rotation with angle �; together with a dilation by

p
�2 + �2 (explain

this).

Remark 0.35 (Important.) In some textbook, the Jordan canonical form of A in the case �1 =
�+ i�; �2 = �� i�; is preferred to have the form�

� ��
� �

�
: (33)

From the above proof, if we choose the basis of R2 as fw; ug instead of fu;wg (recall that u+ iw is
the eigenvector corresponding to �+ i�), we will get

A (w; u) = (w; u)

�
� ��
� �

�
; P�1AP =

�
� �
�� �

�
; P = (w; u) ; (34)

which gives (33). The reason of preferring (33) is that if we look at the matrix multiplication�
� ��
� �

��
x
y

�
=

�
�x� �y
�x+ �y

�
;

then it corresponds to the complex number multiplication

(�+ i�) (x+ iy) = (�x� �y) + i (�x+ �y) :

On the other hand, the matrix multiplication�
� �
�� �

��
x
y

�
=

�
�x+ �y
��x+ �y

�
(35)

corresponds to the complex number multiplication

(�� i�) (x+ iy) = (�x+ �y) + i (��x+ �y) : (36)

Hence we conclude �
� ��
� �

�
� �+ i�;

�
� �
�� �

�
� �� i�: (37)

In my teaching, I prefer the Jordan canonical form in (23), which has the advantage that we choose
P as (u;w) instead of (w; u) :

By Lemma 0.31, the general solution of (22) when A has repeated eigenvalue � can be derived.
We have:

Theorem 0.36 Let A 2M (2) : Consider the 2� 2 linear system(
x0 (t) = Ax

x (0) = x0 2 R2;
(38)

where A has 2 repeated eigenvalues � (and A 6= �I) with corresponding eigenvector v1 and gener-
alized eigenvector v2 (i.e. Av1 = �v1 and Av2 = v1 + �v2 (same as (A� �) v1 = 0 and (A� �) v2 =
v1). Then the unique solution is given by

x (t) = P

�
e�t te�t

0 e�t

�
P�1x0; t 2 (�1;1) ; (39)

12



where P is the 2� 2 invertible matrix given by

P = (v1; v2) ; P�1AP =

�
� 1
0 �

�
: (40)

Note that the matrix identity in (40) is equivalent to the system(
Av1 = �v1;

Av2 = v1 + �v2;
(41)

and x (t) can also be written as the vector form

x (t) = c1e
�tv1 + c2e

�t (tv1 + v2) ; t 2 (�1;1) ; (42)

where c1; c2 solve

c1v1 + c2v2 = x0 (this is same as P�1x0 =
�
c1
c2

�
): (43)

Remark 0.37 (Important.) In summary, the general solution of the above system is

x (t) = c1e
�tv1 + c2e

�t (tv1 + v2) ; t 2 (�1;1) ; (44)

where c1; c2 are arbitrary constants and the two nonzero vectors v1; v2 satisfy (41). If you choose
di¤erent nonzero vectors v1; v2 satisfying (41), you will get the same general solution formula as
in (44).

Proof. From (18), we know that if we do the change of variables x (t) = Py (t) for some P 2
M (2) ; then y (t) will satisfy the equation y0 (t) = P�1AP| {z }y (t) with P�1x0 = y (0) : Now we choose
P = (v1; v2) with

P�1AP =

�
� 1
0 �

�
;

then the equation for y (t) becomes(
y01 (t) = �y1 (t) + y2 (t)

y02 (t) = �y2 (t) ;
; y (t) =

�
y1 (t)
y2 (t)

�
: (45)

which is half-decoupled (good enough). We can solve y2 (t) �rst to get y2 (t) = e�ty2 (0) and
obtain

y01 (t) = �y1 (t) + e
�ty2 (0) ;

which gives
y1 (t) = e

�t [y1 (0) + ty2 (0)] :

We conclude

y (t) =

�
y1 (t)
y2 (t)

�
=

�
e�t te�t

0 e�t

��
y1 (0)
y2 (0)

�
=

�
e�t te�t

0 e�t

�
y (0) :

Therefore,

x (t) = P

�
e�t te�t

0 e�t

�
| {z }P�1x0 = (v1; v2)

�
e�t te�t

0 e�t

��
c1
c2

�

=
�
e�tv1; te

�tv1 + e
�tv2
�� c1

c2

�
= c1e

�tv1 + c2e
�t (tv1 + v2) : (46)

The proof is done. �
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Example 0.38 (2 repeated real eigenvalues.) Find the general solution of the equation

dx

dt
=

�
1 �1
1 3

�
x; t 2 (�1;1) : (47)

Solution:

We have �1 = �2 = 2: For eigenvector corresponding to � = 2; we solve (A� �I) v1 = 0 to get�
x� y = 2x
x+ 3y = 2y

(looking at just one equation is enough !!!)

and get x+y = 0; which gives v1 = (1;�1) : For generalized eigenvector v2, we solve (A� �I) v2 = v1
(same as Av2 = v1 + �v2) to get�

x� y = 2x+ 1
x+ 3y = 2y � 1 (looking at just one equation is enough !!!)

and get x + y = �1 (this line is parallel to the line x + y = 0), which gives (just pick one
solution) v2 = (�1; 0). We conclude

Av1 = 2v1; Av2 = v1 + 2v2:

Hence

P = (v1; v2) (each is column vector) =
�
1 �1
�1 0

�
;

and

P�1 =

�
0 �1
�1 �1

�
; P�1AP =

�
2 1
0 2

�
(Jordan canonical form).

Let x = Py to get
dy

dt
= P�1APy =

�
2 1
0 2

��
y1
y2

�
;

which is now half-decoupled. The general solution for x (t) is given by

x (t) = c1e
�tv1 + c2e

�t (tv1 + v2) = c1e
2t

�
1
�1

�
+ c2e

2t

�
t

�
1
�1

�
+

�
�1
0

��
: (48)

�

Finally, by Lemma 0.31 again, the general solution of (22) when A has complex eigenvalues can
be derived. We have:

Theorem 0.39 Consider the 2� 2 linear system(
x0 (t) = Ax

x (0) = x0 2 R2;
(49)

where A has 2 complex conjugate eigenvalues �+i�; ��i�; � 2 R; � > 0; with corresponding
eigenvectors u+ iw; u� iw; u; w 2 R2: Then the unique solution is given by

x (t) = P

�
e�t cos (�t) e�t sin (�t)
�e�t sin (�t) e�t cos (�t)

�
P�1x0; t 2 (�1;1) ; (50)
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where P is the 2� 2 invertible matrix given by

P = (u;w) ; P�1AP =

�
� �
�� �

�
: (51)

Note that the matrix identity in (51) is equivalent to the system(
Au = �u� �w;

Aw = �u+ �w;
(52)

and x (t) can also be written as the vector form

x (t) = c1e
�t [(cos �t)u� (sin �t)w] + c2e�t [(sin �t)u+ (cos �t)w] ; t 2 (�1;1) ; (53)

where c1; c2 solve

c1u+ c2w = x0 (same as P�1x0 =
�
c1
c2

�
): (54)

Remark 0.40 If c1; c2 are arbitrary in (53), we get general solution of the ODE x0 (t) = Ax (t) :

Proof. Again, let x (t) = Py (t) ; where P = (u;w) : We have

y0 (t) = P�1AP| {z }y (t) = J � y1 (t)
y2 (t)

�
; where J = P�1AP =

�
� �
�� �

�
i.e. we get the system (

y01 (t) = �y1 (t) + �y2 (t)

y02 (t) = ��y1 (t) + �y2 (t) ;
(55)

which is, unfortunately, still coupled together. However, for this particular type of 2�2 system (we
get this particular form (55) due to the help of linear algebra), we can use complex exponential
function to help us. We can look at the identity (recall the correspondence between the matrix
multiplication by J and the complex number multiplication by (�� i�) ; see (35) and (36))

d

dt

�
y1 (t) + iy2 (t)| {z }

�
= (�y1 (t) + �y2 (t)) + i (��y1 (t) + �y2 (t)) = (�� i�)

�
y1 (t) + iy2 (t)| {z }

�
; (56)

which is a complex scalar ODE and it gives the complex solution

y1 (t) + iy2 (t) = Ce
(��i�)t; C 2 C (57)

for some complex constant C = c1 + ic2 2 C; where c1; c2 2 R: By expansion, we have
y1 (t) + iy2 (t) = (c1 + ic2)

��
e�t cos �t

�
� i
�
e�t sin �t

��
=
�
c1e

�t cos �t+ c2e
�t sin �t

�
+ i
�
�c1e�t sin �t+ c2e�t cos �t

�
and conclude the general solution (y1 (t) ; y2 (t)) for (55), which is(

y1 (t) = c1e
�t cos �t+ c2e

�t sin �t

y2 (t) = �c1e�t sin �t+ c2e�t cos �t; t 2 (�1;1) :
(58)

Hence we conclude

x (t) = Py (t) = P

�
c1e

�t cos �t+ c2e
�t sin �t

�c1e�t sin �t+ c2e�t cos �t

�
=
�
c1e

�t cos �t+ c2e
�t sin �t

�
u+

�
�c1e�t sin �t+ c2e�t cos �t

�
w

= c1e
�t [(cos �t)u� (sin �t)w] + c2e�t [(sin �t)u+ (cos �t)w] ; t 2 (�1;1) :

The proof is done. �
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Example 0.41 Find the general solution of the equation

x0 (t) =

�
3 �2
1 1

�
x; t 2 (�1;1) : (59)

Solution: The matrix has two complex conjugate eigenvalues � = 2� i = � � i�; � = 2; � =
1: Solve (

3x� 2y = (2 + i)x

x+ y = (2 + i) y (this equation looks easier)

to get x = (1 + i) y: Hence a complex eigenvector for 2 + i is

v =

�
1 + i
1

�
=

�
1
1

�
+ i

�
1
0

�
= u+ iw:

According to the proof, if we let

P = (u;w) =

�
1 1
1 0

�
then

P�1AP =

�
0 1
1 �1

��
3 �2
1 1

��
1 1
1 0

�
=

�
1 1
2 �3

��
1 1
1 0

�
=

�
2 1
�1 2

�
=

�
� �
�� �

�
;

which is a canonical form. By (53), the general solution is given by

x (t) = c1e
�t [(cos �t)u� (sin �t)w] + c2e�t [(sin �t)u+ (cos �t)w] ; t 2 (�1;1) ; (60)

where u = (1; 1) ; w = (1; 0) : �

0.0.2 A special 2� 2 linear system with variable coe¢ cients of the form tdx
dt
= Ax; t 2

(0;1) :

In this section, we look at a special �rst order system of the form

t
dx

dt
= Ax; where A 2M (2) ; t 2 (0;1) : (61)

To solve (61), similar to the Euler equation, we use the change of variables method. Let s 2
(�1;1) be the new variable given by s = log t; t 2 (0;1) (this is a one-one onto relation between
t 2 (0;1) and s 2 (�1;1)). Then x (t) becomes ~x (s) ; i.e. ~x (log t) = x (t) : By the chain rule,
we have

x0 (t) = ~x0 (s)
ds

dt
=
1

t
~x0 (s) (same as ~x0 (s) = tx0 (t))

and so the new equation for ~x (s) becomes the standard one:

~x0 (s) = tx0 (t) = Ax = A~x (s) ; s 2 (�1;1) : (62)

Once you know the general solution ~x (s) for (62), you can know the general solution x (t) for (61)
by the identity x (t) = ~x (log t) ; t 2 (0;1) :
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0.0.3 Invariant subspace of a general �rst-order linear system.

Before we look at the 3 � 3 linear system, we prove the following important result for a general
n� n linear system.

Lemma 0.42 Let A 2 M (n) and let V be a k-dimensional subspace of Rn which is invariant
under A (i.e., if v 2 V; then Av 2 V ), where 1 � k � n � 1: Let x (t) ; t 2 (�1;1) ; be the
solution of the system 8<:

dx

dt
= Ax

x (0) = x0 2 Rn:
(63)

Then if x0 2 V; we will have

x (t) 2 V for all t 2 (�1;1) : (64)

Remark 0.43 If we view A : Rn ! Rn as a vector �eld on Rn; then the above result is intuitively
clear.

Solution:

Let s = n�k and pick an orthonormal basis fv1; v2; :::; vk; w1; :::; wsg ofRn with fv1; v2; :::; vkg �
V: One can express x (t) as

x (t) = a1 (t) v1 + � � �+ ak (t) vk + b1 (t)w1 + � � �+ bs (t)ws; t 2 (�1;1)
with

b1 (0) = � � � = bs (0) = 0 (since x (0) 2 V ).
We have for each 1 � i � s the following

d

dt
hx (t) ; wii = b0i (t) = hAx (t) ; wii ;

=

�
A

�
a1 (t) v1 + � � �+ ak (t) vk| {z }+b1 (t)w1 + � � �+ bs (t)ws

�
; wi

�
= hA (b1 (t)w1 + � � �+ bs (t)ws) ; wii =

sX
j=1

bj (t) hAwj; wii ;

i.e. (
b0i (t) =

Ps
j=1 bj (t) hAwj; wii =

Ps
j=1 hwi; Awji bj (t) ; 8 1 � i � s

b1 (0) = � � � = bs (0) = 0:
(65)

Note that (65) is an s� s system of �rst-order linear equation for b1 (t) ; ::: ; bs (t) ; with zero
initial condition. By existence and uniqueness theorem, we have

b1 (t) � � � � = bs (t) � 0; 8 t 2 (�1;1) ; (66)

and so
x (t) = a1 (t) v1 + � � �+ ak (t) vk 2 V; 8 t 2 (�1;1) : (67)

The proof is done. �
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0.0.4 3� 3 linear system with constant coe¢ cients.

We now moved to the 3� 3 linear system with constant coe¢ cients:

x0 (t) = Ax; where A 2M (3) ; x (t) = (x (t) ; y (t) ; z (t)) ; t 2 (�1;1) : (68)

We want to �nd its general solution or a particular solution with x (0) = x0; where x0 is the initial
condition.
In the following, we want to use the "diagonalization method (change of variables method)"

to solve it. Denote the three eigenvalues of A by �1; �2 and �3: We have several cases to consider.

The case when �1; �2; �3 are real and distinct.

This is the easiest case. Let v1; v2; v3 be the eigenvectors corresponding to �1; �2; �3: They
are independent. The general solution is given by

x (t) = c1e
�1tv1 + c2e

�2tv2 + c3e
�3tv3; (69)

where c1; c2 and c3 are arbitrary constants.

The case when �1 = �; �2 = �3 = �; � 6= �; �; � 2 R.

In this case, we have dimker (A� �I) = 1; but the dimension of ker (A� �I) can be either 1 or
2:

Case 1: The eigenspace ker (A� �I) has dimension 2:

If we can �nd two independent eigenvectors v2; v3 for the repeated eigenvalue �; then the
three eigenvectors v1; v2; v3 are independent in R3 (because if v1 = av2 + bv3 for some constants
a; b, we will get a contradiction) and we can diagonalize A as

P�1AP =

0@ � 0 0
0 � 0
0 0 �

1A ; P = (v1; v2; v3) :

Then we are in the previous easy case. The general solution is given by (one can also use change
of variables x (t) = Py (t) ; y0 (t) = (P�1AP )y (t) to see the following)

x (t) = c1e
�tv1 + c2e

�tv2 + c3e
�tv3; (70)

where c1; c2 and c3 are arbitrary constants (to see this, use the change of variables x (t) = Py (t) and
see that the three equations for y1 (t) ; y2 (t) ; y3 (t) are decoupled).

Example 0.44 Do Example 4 in p. 403.

Solution:

The matrix

A =

0@ 0 1 1
1 0 1
1 1 0

1A
has three eigenvalues �1 = 2; �2 = �3 = �1: For �1 = 2; we solve8>><>>:

y + z = 2x

x+ z = 2y

x+ y = 2z
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and get the relation x = y = z and so we pick v1 = (1; 1; 1) : For � = �2 = �3 = �1; we solve8>><>>:
y + z = �x

x+ z = �y

x+ y = �z

and get the relation x + y + z = 0: Hence the eigenspace corresponding to � = �1 has dimension
2: One can pick 2 independent eigenvectors v2; v3 for � = �1 as

v2 =

0@ 1
0
�1

1A ; v3 =

0@ 0
1
�1

1A :
By theory, the general solution of the system is given by

x (t) = c1e
2tv1 + c2e

�tv2 + c3e
�tv3;

where fv1; v2; v3g ; given above, form a basis in R3: �

Case 2: The eigenspace ker (A� �I) has dimension 1:

If we can �nd only one independent eigenvector for the repeated eigenvalue �; then we cannot
diagonalize the matrix A: Its Jordan canonical form is given by:0@ � 0 0

0 � 1
0 0 �

1A : (71)

This is due to the following:

Lemma 0.45 (The eigenspace ker (A� �I) has dimension 1:) Let A 2 M (3) with three real
eigenvalues �; �; �; where � 6= �: Assume dimker (A� �I) = 1 (i.e. we can �nd only one
independent eigenvector for eigenvalue �). Then one can �nd a basis fv1; v2; v3g of R3 satisfying

(A� �I) v1 = 0; (A� �I) v2 = 0; (A� �I) v3 = v2: (72)

As a consequence, we have

A (v1; v2; v3) = (v1; v2; v3)

0@ � 0 0
0 � 1
0 0 �

1A ; (73)

i.e.

P�1AP =

0@ � 0 0
0 � 1
0 0 �

1A ; where P = (v1; v2; v3) 2M (3) : (74)

Proof. Clearly we can �nd two independent eigenvectors v1; v2 such that Av1 = �v1; Av2 =
�v2; where � 6= �: Now we look at the linear transformation

A� �I : R3 ! R3: (75)

Let K = ker (A� �I) ; R = Im (A� �I) : We have dimK = 1 and by the Rank Theorem in
Linear Algebra (applied to the linear transformation A � �I : R3 ! R3), we know that dimR =
2: Hence K is a line and R is a plane in R3:
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Step 1: Show that K � R.

We now claim that K � R. We prove by contradiction and assume K * R: Note that the
operator A��I : R! R is a map from R to R (this is because it maps the whole R3 onto R; hence
it also maps R to R): Now by the identity

A = (A� �I) + �I

we see that A : R ! R too. Since A : R ! R is a linear map with dimR = 2; on it we have two
eigenvalues. Since we assume K * R (which implies that on R one cannot �nd any nonzero vector
v 6= 0 with Av = �v), both eigenvalues r1; r2 of A : R ! R on R must be di¤erent from � and
the only possibility is that r1 = r2 = �: This gives a contradiction (since the three eigenvalues of
A : R3 ! R3 are �; �; �). This contradiction implies that K � R:

Step 2: Show that the equation (A� �I) v3 = v2 has a solution v3 6= 0 2 R3:

As K � R (R is the image of A � �I : R3 ! R3) and v2 2 K � R; there exists some vector
v3 6= 0 2 R3 (we called v3 a generalized eigenvector of v2) such that

(A� �I) v3 = v2 2 K � R:

Step 3: Show that fv1; v2; v3g are independent in R3.

At this moment, we have obtained three nonzero vectors v1; v2; v3; satisfying

(A� �I) v1 = 0; (A� �I) v2 = 0; (A� �I) v3 = v2; where � 6= �; (76)

and we already know that v1; v2 are independent. Now we can infer that v1 2 R also. This can be
easily seen from the identity

(A� �I) v1 = Av1 � �v1 = (�� �) v1 2 R; � 6= �:

Therefore, fv1; v2g is actually a basis of the plane R and if v3 lies on the plane R; i.e.

v3 = �v1 + �v2 for some �; �;

then applying A� �I onto it we can get

v2 = (A� �I) v3 = (A� �I) (�v1 + �v2) = � (A� �I) v1 = � (�� �) v1;

a contradiction. Therefore fv1; v2; v3g is linearly independent in R3 and we have (74). The proof
is done.

Remark 0.46 Draw a geometric picture for the above proof.

Remark 0.47 (The picture of the linear map A � �I : R3 ! R3 acting on the basis
fv1; v2; v3g :) We have 8>>>><>>>>:

v1
A��I! (�� �) v1

A��I! (�� �)2 v1

v2
A��I! 0

A��I! 0

v3
A��I! v2

A��I! 0:

The vectors fv1; v3g are mapped (by the linear map A� �I) into R and the vector v2 is mapped (by
the linear map A� �I) into 0:
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Remark 0.48 (Quick way to reduce A into Jordan canonical form in Lemma 0.45.) In
conclusion, we need to solve v1; v2; v3 satisfying the system:

(A� �I) v1 = 0; (A� �I) v2 = 0; (A� �I) v3 = v2: (77)

Then from the proof we see that the third equation (A� �I) v3 = v2 has a solution v3 and fv1; v2; v3g
is automatically linearly independent. Moreover, for �xed chosen v2; the set fv3 2 R3 : (A� �I) v3 = v2g
is a line parallel to the line K = ker (A� �I) (check this simple property by yourself).

Theorem 0.49 (The eigenspace ker (A� �I) has dimension 1:) Let A 2M (3) with three real
eigenvalues �; �; �; where � 6= �: Assume dimker (A� �I) = 1: Consider the 3� 3 linear system(

x0 (t) = Ax

x (0) = x0 2 R3:
(78)

Then the unique solution is given by

x (t) = P

0@ e�t 0 0
0 e�t te�t

0 0 e�t

1AP�1x0; (79)

where P is the 3� 3 invertible matrix given by

P = (v1; v2; v3) ; P�1AP =

0@ � 0 0
0 � 1
0 0 �

1A : (80)

Here the three vectors v1; v2; v3 satisfy

(A� �I) v1 = 0; (A� �I) v2 = 0; (A� �I) v3 = v2: (81)

Note that x (t) can also be written as the vector form

x (t) = c1e
�tv1 + c2e

�tv2 + c3e
�t (tv2 + v3) ; (82)

where c1; c2; c3 solve

c1v1 + c2v2 + c3v3 = x0 (this is same as P�1x0 =

0@ c1
c2
c3

1A ): (83)

Remark 0.50 In (81), we call v3 a generalized eigenvector for the map A : R3 ! R3: See
Remark 0.33 also.

Proof. Let P = (v1; v2; v3) : In this case the ODE for y (t) (we let x = Py) becomes the following
"half-decoupled system":

y0 (t) =
�
P�1AP

�
y (t) =

0@ � 0 0
0 � 1
0 0 �

1Ay (t) ; y (t) =

0@ y1 (t)
y2 (t)
y3 (t)

1A ; (84)

which gives the half-decoupled system8>><>>:
y01 (t) = �y1 (t)

y02 (t) = �y2 (t) + y3 (t)

y03 (t) = �y3 (t)

y (t) =

0@ y1 (t)
y2 (t)
y3 (t)

1A :
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One can solve y1 (t) = c1e�t and y3 (t) = c3e�t directly and for y2 (t) it satis�es

y02 (t) = �y2 (t) + y3 (t) = �y2 (t) + c3e
�t;

which gives
y2 (t) = (c2 + c3t) e

�t;

where in the above c1; c2; c3 are integration constants. Hence we get

y (t) =

0@ c1e
�t

(c2 + c3t) e
�t

c3e
�t

1A ; t 2 (�1;1)

and the general solution to the ODE is given by

x (t) = Py (t) = (v1; v2; v3)y (t) = (v1; v2; v3)

0@ c1e
�t

(c2 + c3t) e
�t

c3e
�t

1A
= c1e

�tv1 + (c2 + c3t) e
�tv2 + c3e

�tv3

= c1e
�tv1 + c2e

�tv2 + c3e
�t (tv2 + v3) : (85)

The proof is done. �

Example 0.51 (The eigenspace ker (A� �I) has dimension 1:) Find the general solution of
the system

d

dt

0@ x
y
z

1A =

0@ 0 1 0
0 0 1
2 �5 4

1A0@ x
y
z

1A :
Solution:

The polynomial det (A� �I) = 0 is given by��3+4�2�5�+2 = 0; i.e. (�� 2) (�� 1)2 = 0: The
eigenvalues of the coe¢ cient matrix are � = 2; � = 1; � = 1: To �nd the eigenvector for � = 2, we
solve 8>><>>:

y = 2x

z = 2y

2x� 5y + 4z = 2z;
which gives the line y = 2x; z = 4x and so v1 = (1; 2; 4) : To �nd the eigenvector for the repeated
� = 1, we solve 8>><>>:

y = x

z = y

2x� 5y + 4z = z;
to get the relation x = y = z and we pick one eigenvector v2 = (1; 1; 1) : As it is impossible to �nd
another independent eigenvector, we have to �nd generalized eigenvector. We solve8>><>>:

y = x+ 1

z = y + 1

2x� 5y + 4z = z + 1

to get the relation y = x + 1; z = x + 2 (this is a line parallel to the line x = y = z since any
two solutions u; w of the equation (A� �I) v3 = v2 satisfy (A� �I) (u� w) = 0 and so u � w is
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a multiple of v2) and obtain a generalized eigenvector v3 = (1; 2; 3) (or other possible answers).
We see that v1; v2; v3 are linearly independent.
The general solution is given by0@ x (t)

y (t)
z (t)

1A = c1e
2t

0@ 1
2
4

1A+ c2et
0@ 1
1
1

1A+ c3et
24t
0@ 1
1
1

1A+
0@ 1
2
3

1A35 :
�

Example 0.52 (The eigenspace ker (A� �I) has dimension 2:) Find the general solution of
the system

d

dt

0@ x
y
z

1A =

0@ 5 �3 1
4 �3 2
6 �9 6

1A0@ x
y
z

1A :
Solution:

We have ������
5� � �3 1
4 �3� � 2
6 �9 6� �

������
= (5� �) (�3� �) (6� �)� 36� 36 + 6 (3 + �) + 12 (6� �) + 18 (5� �)
= 6�2 � 12�� 90� �3 + 2�2 + 15�� 72 + 18 + 6�+ 72� 12�+ 90� 18�
= �

�
�3 � 8�2 + 21�� 18

�
= � (�� 2) (�� 3)2 :

Hence we have � = 2; � = 3; � = 3: For � = 2; we solve8>><>>:
5x� 3y + z = 2x

4x� 3y + 2z = 2y

6x� 9y + 6z = 2z;
i.e. 8>><>>:

3x� 3y + z = 0

4x� 5y + 2z = 0

6x� 9y + 4z = 0
to get the relation y = 2x; z = 3x; which is a line, and obtain v1 = (1; 2; 3) : For � = 3; we solve8>><>>:

5x� 3y + z = 3x

4x� 3y + 2z = 3y

6x� 9y + 6z = 3z;
i.e. 8>><>>:

2x� 3y + z = 0

4x� 6y + 2z = 0

6x� 9y + 3z = 0
to get the relation 2x � 3y + z = 0; which is a plane, and obtain two linearly independent
eigenvectors v2 = (3; 2; 0) ; v3 = (0; 1; 3) : The general solution is given by0@ x (t)

y (t)
z (t)

1A = c1e
2t

0@ 1
2
3

1A+ c2e3t
0@ 3
2
0

1A+ c3e3t
0@ 0
1
3

1A :
�
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The case when �1 = �2 = �3 = �:

Case 1: The eigenspace ker (A� �I) has dimension 3:

In such a case, the matrix A 2 M (3) must have the form A = �I: We can ignore this trivial
case.

Case 2: The eigenspace ker (A� �I) has dimension 2:

Assume �1 = �2 = �3 = � and dimker (A� �I) = 2: This means that we can �nd two linearly
independent eigenvectors of �: We claim the following:

Lemma 0.53 (The eigenspace ker (A� �I) has dimension 2:) Let A 2M (3) with three equal
real eigenvalues �; �; �: Assume dimker (A� �I) = 2: Then we can �nd a basis fv1; v2; v3g of R3
satisfying

(A� �I) v1 = 0; (A� �I) v2 = 0; (A� �I) v3 = v2;
where v1; v2 2 K are eigenvectors with v1 =2 R; v2 2 R; R = Im (A� �I) ; and v3 is a general-
ized eigenvector of v2. As a consequence, we have

A (v1; v2; v3) = (v1; v2; v3)

0@ � 0 0
0 � 1
0 0 �

1A ; (86)

i.e.

P�1AP =

0@ � 0 0
0 � 1
0 0 �

1A ; where P = (v1; v2; v3) 2M (3) : (87)

Proof. Let K = ker (A� �I) ; dimK = 2; R = Im (A� �I) : By the Rank Theorem, we know
dimR = 1: Hence K is a plane and R is a line.

Step 1: Show that R � K.

To see this, note that the operator A� �I : R! R (this is because it maps the whole R3 onto
R; hence it also maps R to R): Since dimR = 1; we must have for any v 6= 0 2 R the following

(A� �I) v = �v for some � 2 R:

If � 6= 0; then A has eigenvalue � + �; a contradiction. Hence (A� �I) v = 0 and v 2 K: Thus
R � K:

Step 2: Choose basis fv1; v2; v3g :
Now we choose two linearly independent vectors v1; v2 in K = ker (A� �I) with v1 =2

R; v2 2 R (this step is crucial !!): Then, since v2 2 R; there exists some nonzero vector v3 2 R3
such that

(A� �I) v3 = v2 2 R: (88)

Such we have (A� �I) v3 = v2 6= 0; the vector v3 =2 K and so it is independent to v1; v2 (note that
fv1; v2g is a basis of K). Therefore, fv1; v2; v3g are independent and we have identity (86).

The proof of Lemma 0.53 is done. �
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Remark 0.54 (Quick way to reduce A into Jordan canonical form in Lemma 0.53.) In
conclusion, we need to solve v1; v2; v3 satisfying the system:

(A� �I) v1 = 0; (A� �I) v2 = 0; (A� �I) v3 = v2; v1; v2 2 K; (89)

and also require v1 =2 R; v2 2 R; R = Im (A� �I) : The third equation (A� �I) v3 = v2 does have
a solution v3 2 R3 due to v2 2 R: Now, automatically, the vectors v1; v2; v3 are independent in
R3: In solving ODE x0 = Ax; you need to �nd the space R = Im (A� �I) �rst in order to �nd
v1 =2 R; v2 2 R:

Remark 0.55 Note that we have

(A� �I)2 v = 0 for all v 2 R3: (90)

That is:
R3 A��I! R (R � K) A��I! 0: (91)

Let P = (v1; v2; v3) : In this case the ODE for y (t) (we let x = Py) becomes the following
"half-decoupled system":

y0 (t) =
�
P�1AP

�
y (t) =

0@ � 0 0
0 � 1
0 0 �

1Ay (t) ; y (t) =

0@ y1 (t)
y2 (t)
y3 (t)

1A (92)

and the general solution to the ODE is given by

x (t) = Py (t) = (v1; v2; v3)y (t) = (v1; v2; v3)

0@ c1e
�t

(c2 + c3t) e
�t

c3e
�t

1A
= c1e

�tv1 + c2e
�tv2 + c3e

�t (tv2 + v3) : (93)

The discussion for this case is done.

We summarize the above in the following:

Theorem 0.56 (The eigenspace ker (A� �I) has dimension 2:) Let A 2 M (3) with three
equal real eigenvalues �; �; �: Assume dimker (A� �I) = 2: Consider the 3� 3 linear system(

x0 (t) = Ax

x (0) = x0 2 R3:
(94)

Then the unique solution is given by

x (t) = P

0@ e�t 0 0
0 e�t te�t

0 0 e�t

1AP�1x0; (95)

where P is the 3� 3 invertible matrix given by

P = (v1; v2; v3) ; P�1AP =

0@ � 0 0
0 � 1
0 0 �

1A (96)

and v1; v2 are eigenvectors with v1 =2 R; v2 2 R; R = Im (A� �I) ; and v3 is a generalized
eigenvector of v2, i.e. we have

(A� �I) v1 = 0; (A� �I) v2 = 0; (A� �I) v3 = v2: (97)
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Note that x (t) can also be written as the vector form

x (t) = c1e
�tv1 + c2e

�tv2 + c3e
�t (tv2 + v3) ; (98)

where c1; c2; c3 solve

c1v1 + c2v2 + c3v3 = x0 (this is same as P�1x0 =

0@ c1
c2
c3

1A ): (99)

Example 0.57 Find the general solution of the system

d

dt

0@ x
y
z

1A =

0@ 5 �3 �2
8 �5 �4
�4 3 3

1A0@ x
y
z

1A :

Solution:

The characteristic polynomial of the coe¢ cient matrix is������
5� � �3 �2
8 �5� � �4
�4 3 3� �

������
= (5� �) (�5� �) (3� �)� 48� 48 + 8 (5 + �) + 12 (5� �) + 24 (3� �)
= 3�2 � �3 + 1� 3� = � (�� 1)3 :

Hence we have �1 = �2 = �3 = 1: To �nd the eigenvector for � = 1, we solve8>><>>:
5x� 3y � 2z = x

8x� 5y � 4z = y

�4x+ 3y + 3z = z

and obtain 4x� 3y � 2z = 0: Thus one can �nd two linearly independent eigenvectors v1; v2: The
space K = ker (A� I) is given by the plane 4x� 3y � 2z = 0:
To go further, we need to �nd the image space R = Im (A� I) �rst. The image of the matrix

(which is the space of all possible linear combinations of the three column vectors)

A� �I = A� I =

0@ 4 �3 �2
8 �6 �4
�4 3 2

1A : R3 ! R3

is a line R given by ft (1; 2;�1) : t 2 (�1;1)g. We note that R � K since the vector (1; 2;�1)
lies on the plane 4x� 3y � 2z = 0:
According to the proof, we must choose two linearly independent vectors v1; v2 in K

with v1 =2 R; v2 2 R: Thus we choose v1 = (3; 4; 0) ; v2 = (1; 2;�1) : Finally, we solve (A� I) v3 =
v2 (same as Av3 = v3 + v2) to get 8>><>>:

5x� 3y � 2z = x+ 1

8x� 5y � 4z = y + 2

�4x+ 3y + 3z = z � 1
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and get 4x � 3y � 2z = 1 (this is a plane parallel to 4x � 3y � 2z = 0; since any two solutions
u; w of the equation (A� I) v3 = v2 satisfy (A� I) (u� w) = 0 and so u � w lies on the plane
4x� 3y � 2z = 0): So we choose v3 = (0; 1;�2) : We see that v1; v2; v3 are linearly independent.
The general solution is given by

x (t) = c1e
t

0@ 3
4
0

1A+ c2et
0@ 1

2
�1

1A+ c3et
0@t
0@ 1

2
�1

1A+
0@ 0

1
�2

1A1A : (100)

�

Remark 0.58 (Be careful !!) If we do not choose v2 2 R; then the system (A� I) v3 = v2 may
not have a solution. For example, choose v2 = (3; 4; 0) 2 K; v2 =2 R: Then we solve8>><>>:

5x� 3y � 2z = x+ 3

8x� 5y � 4z = y + 4

�4x+ 3y + 3z = z + 0

and see that there is no solution for v3 at all.

Case 3: The eigenspace ker (A� �I) has dimension 1:

Assume �1 = �2 = �3 = � and dimker (A� �I) = 1: This means that we can �nd only one
independent eigenvector of �: In this case Lemma 0.53 becomes:

Lemma 0.59 (The eigenspace ker (A� �I) has dimension 1:) Let A 2M (3) with three equal
real eigenvalues �; �; �: Assume dimker (A� �I) = 1: Then we can �nd a basis fv1; v2; v3g of R3
satisfying

(A� �I) v1 = 0; (A� �I) v2 = v1; (A� �I) v3 = v2: (101)

where v1 is eigenvector and v2; v3 are generalized eigenvector of v1; v2 respectively. As a
consequence, we have

A (v1; v2; v3) = (v1; v2; v3)

0@ � 1 0
0 � 1
0 0 �

1A ; (102)

i.e.

P�1AP =

0@ � 1 0
0 � 1
0 0 �

1A ; where P = (v1; v2; v3) 2M (3) : (103)

Proof. Let K = ker (A� �I) ; R = Im (A� �I) ; dimK = 1: By the Rank Theorem, we know
dimR = 2: Hence K is a line and R is a plane in R3: Let v1 6= 0 2 K be an eigenvector of A for
�:

Step 1: Show that K � R.

Assume K * R:We will derive a contradiction. Note that on the vector space R the linear map
A � �I : R ! R has two eigenvalues �1; �2; both are nonzero (since we assume K * R),
which will imply that A : R3 ! R3 has eigenvalues �+ �1 and �+ �2; both are di¤erent from �; a
contradiction. This contradiction implies that K � R (and we also have �1 = �2 = 0; however,
A� �I : R! R is not a zero map, otherwise we will have R � K; a contradiction).
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Step 2: Show that (A� �I)R = K:

Next we claim that (A� �I)R = K: To see this, note that A� �I : R ! R and (A� �I)R is
one-dimensional due to K � R (here we apply the Rank Theorem to the linear map A��I : R!
R; where dimR = 2). Therefore, (A� �I)R is a line L in the plane R spanned by some nonzero
vector v 6= 0; where v 2 L � R: But then we have

(A� �I) v = t0v for some t0 2 R

and if t0 6= 0; the map A : R3 ! R3 has new eigenvalue � + t0; a contradiction. Hence we must
have t0 = 0 and then (A� �I) v = 0; meaning that v 2 K: As a result, we have L = K and so
(A� �I)R = K:

Step 3: Choose basis fv1; v2; v3g :

Now let v1 2 K be an eigenvector of A. By (A� �I)R = K; there exists some nonzero vector
v2 2 R; v2 =2 K; such that (see Remark 0.63 below too)

(A� �I) v2 = v1; v1 2 K: (104)

Finally, since v2 2 R and R = Im (A� �I) ; there exists some nonzero vector v3 2 R3 such that

(A� �I) v3 = v2 (note that now (A� �I)2 v3 = v1). (105)

Step 4: Show that fv1; v2; v3g are automatically independent in R3.

We then claim that v1; v2; v3 are linearly independent. If not, then (we already know that
v1; v2 are independent)

v3 = �v1 + �v2 2 R for some �; �:

Applying A� �I onto it to get

v2 = (A� �I) v3 = (A� �I) (�v1 + �v2) = � (A� �I) v2 = �v1 2 K;

a contradiction since v2 =2 K. Therefore we have v3 2 R3; v3 =2 R; and (102) cab be achieved. �

Remark 0.60 Draw a diagram for the above proof.

Remark 0.61 We have the picture for the above proof:

R3 A��I! R (K � R) A��I! K
A��I! 0: (106)

Remark 0.62 In conclusion, we need to solve v1; v2; v3 satisfying the system:

(A� �I) v1 = 0; (A� �I) v2 = v1; (A� �I) v3 = v2: (107)

Again, same as before, we say v2; v3 are generalized eigenvector of v1; v2 respectively.

Remark 0.63 (Important.) We claim that when we solve the equation (A� �I) v2 = v1; we
automatically have v2 2 R; v2 =2 K (clearly v2 6= 0): Clearly we �rst have v2 =2 K; otherwise we
will have (A� �I) v2 = 0 and it implies v1 = 0: Now we claim v2 2 R: To see this, assume we have
v2 2 R3; v2 =2 R; such that

(A� �I) v2 = v1; where v1 2 K; v1 6= 0:
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Then for any v 2 R3 there exists some vector w 2 R such that

v = v2 + w; v2 =2 R; w 2 R; dimR = 2:

This implies

(A� �I) v = (A� �I) (v2 + w) = v1+(A� �I)w 2 K (here we use the property (A� �I)R = K)

and so dim Im (A� �I) = 1; a contradiction (since we already have dim Im (A� �I) = 2). In view
of this, if we solve the equation

(A� �I) v2 = v1; where v1 2 K; v1 6= 0:

then we automatically have v2 2 R; v2 =2 K: Then one can go directly to �nd v3 2 R3 such that

(A� �I) v3 = v2 2 R:

Clearly, we have v3 6= 0: If v3 2 R; we would have v3 = �v1 + �v2 for some �; � 2 R; which gives

v2 = (A� �I) v3 = (A� �I) (�v1 + �v2) = (A� �I) (�v2) = �v1;

a contradiction.

Remark 0.64 In summary, we have the following: Assume A is a 3�3 real matrix with �1 = �2 =
�3 = �, then if ker (A� �I) has three independent eigenvectors, then

P�1AP =

0@ � 0 0
0 � 0
0 0 �

1A (in this case, A = �I)

and if ker (A� �I) has two independent eigenvectors, then

P�1AP =

0@ � 0 0
0 � 1
0 0 �

1A
and if ker (A� �I) has only one independent eigenvector, then

P�1AP =

0@ � 1 0
0 � 1
0 0 �

1A :
Let P = (v1; v2; v3) : In this case the ODE for y (t) (we let x = Py) becomes the following

"half-decoupled system":

y0 (t) =
�
P�1AP

�
y (t) =

0@ � 1 0
0 � 1
0 0 �

1Ay (t) ; y (t) =

0@ y1 (t)
y2 (t)
y3 (t)

1A
and so 8>><>>:

y01 = �y1 + y2

y02 = �y2 + y3

y03 = �y3:

We get y3 (t) = c3e�t and
y2 (t) = (c2 + c3t) e

�t

29



and
y1 (t) =

�
c1 + c2t+

c3
2
t2
�
e�t:

We conclude the general solution to the ODE

x (t) = Py (t) = (v1; v2; v3)y (t) = (v1; v2; v3)

0@ �
c1 + c2t+

c3
2
t2
�
e�t

(c2 + c3t) e
�t

c3e
�t

1A
=
�
c1 + c2t+

c3
2
t2
�
e�tv1 + (c2 + c3t) e

�tv2 + c3e
�tv3

= c1e
�tv1 + c2e

�t (tv1 + v2) + c3e
�t

�
t2

2
v1 + tv2 + v3

�
: (108)

Note that, in the above, v1 is eigenvector and v2; v3 are generalized eigenvectors. The discussion
for this case is done. �

Same as before, we can summarize the above in the following:

Theorem 0.65 (The eigenspace ker (A� �I) has dimension 1:) Let A 2 M (3) with three
equal real eigenvalues �; �; �: Assume dimker (A� �I) = 1: Consider the 3� 3 linear system(

x0 (t) = Ax

x (0) = x0 2 R3:
(109)

Then the unique solution is given by

x (t) = P

0@ e�t te�t t2

2
e�t

0 e�t te�t

0 0 e�t

1AP�1x0; (110)

where P is the 3� 3 invertible matrix given by

P = (v1; v2; v3) ; P�1AP =

0@ � 1 0
0 � 1
0 0 �

1A : (111)

Here the three vectors v1; v2; v3 satisfy

(A� �I) v1 = 0; (A� �I) v2 = v1; (A� �I) v3 = v2: (112)

Note that x (t) can also be written as the vector form

x (t) = c1e
�tv1 + c2e

�t (tv1 + v2) + c3e
�t

�
t2

2
v1 + tv2 + v3

�
(113)

where c1; c2; c3 solve

c1v1 + c2v2 + c3v3 = x0 (this is same as P�1x0 =

0@ c1
c2
c3

1A ): (114)

Example 0.66 Find the general solution of the system

d

dt

0@ x
y
z

1A =

0@ 1 1 1
2 1 �1
�3 2 4

1A0@ x
y
z

1A :
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Solution:

The characteristic polynomial of the coe¢ cient matrix is������
1� � 1 1
2 1� � �1
�3 2 4� �

������
= (1� �)2 (4� �) + 4 + 3 + 3 (1� �) + 2 (1� �)� 2 (4� �)
=
�
�2 � 2�+ 1

�
(4� �) + 4� 3�

= ��3 + 6�2 � 12�+ 8 = � (�� 2)3 :

Hence we have �1 = �2 = �3 = 2: To �nd the eigenvector for � = 2, we solve8>><>>:
x+ y + z = 2x

2x+ y � z = 2y

�3x+ 2y + 4z = 2z

and we obtain x = 0; y + z = 0: Thus we can �nd only one independent eigenvector v1 =
(0; 1;�1) : The image of the matrix

A� 2I =

0@ �1 1 1
2 �1 �1
�3 2 2

1A : R3 ! R3

is the plane R given by x� y� z = 0:We can see that the line K = ft (0; 1;�1) : t 2 Rg lies in the
plane R:
Then we solve (A� 2) v2 = v1 to get8>><>>:

x+ y + z = 2x

2x+ y � z = 2y + 1

�3x+ 2y + 4z = 2z � 1

and obtain x = 1; y+z = 1:We can pick v2 = (1; 1; 0) (note that here we have v2 2 R; v2 =2 K; which
is always the case due to Remark 0.63). Finally, we solve (A� 2) v3 = v2 to get8>><>>:

x+ y + z = 2x+ 1

2x+ y � z = 2y + 1

�3x+ 2y + 4z = 2z

and obtain x = 2; y + z = 3: We can pick v3 = (2; 3; 0) : Hence the general solution is given by

x (t) = c1e
2tv1 + c2e

2t (tv1 + v2) + c3e
2t

�
t2

2
v1 + tv2 + v3

�
= � � � � :

�

The case when �1 = �; �2 = �+ i�; �3 = �� i�:

Assume we have three eigenvalues � 2 R and � + i�; � � i�; where �; � 2 R; � > 0. Let
v1 2 R3; v1 6= 0; be an eigenvector of � and let v2 + iv3; v2; v3 2 R3; v3 6= 0; be an eigenvector of
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�+ i�: Then we know that v2 � iv3 is an eigenvector of �� i�: Now v1; v2; v3 satisfy the following
identities:

Av1 = �v1; Av2 = �v2 � �v3; Av3 = �v2 + �v3: (115)

From it we immediately see that v2 6= 0 (otherwise we get �v3 = 0; impossible).
Now we check that the three vectors v1; v2; v3 satisfying (115) must be independent in R3.

To begin with, they are all nonzero vectors and if v2 = �v3 for some � 6= 0; � 2 R; then the second
and third equations in (115) give(

A�v3 = ��v3 � �v3 (same as Av3 =
�
�� �

�

�
v3; � 6= 0; � > 0

Av3 = ��v3 + �v3 (same as Av3 = (�+ ��) v3; � 6= 0; � > 0;

which says that A has two di¤erent real eigenvalues ���=�; �+�� (they are equal if and only
if � = �i; impossible). Hence v2; v3 are independent (note that here the proof is slightly di¤erent
from the 2� 2 case).
Finally, if v1 = sv2 + tv3 for some s; t 2 R (at least one of them is not zero), then we will have

� (sv2 + tv3)| {z } = �v1 = Av1 = A (sv2 + tv3) = s (�v2 � �v3) + t (�v2 + �v3)| {z };
which gives

s (�v2 � �v3) + t (�v2 + �v3)� � (sv2 + tv3) = 0;
i.e.

[s (�� �) + t�] v2 + [t (�� �)� s�] v3 = 0;
same as (

(�� �) s+ �t = 0

��s+ (�� �) t = 0:
(116)

Since the above 2� 2 system of equations has a nonzero solution (s; t) ; we must have���� �� � �
�� �� �

���� = 0 (same as (�� �)2 + �2 = 0),

a contradiction. Therefore, fv1; v2; v3g is a basis of R3 and we have

AP = P

0@ � 0 0
0 � �
0 �� �

1A ; P = (v1; v2; v3) ; P�1 exists:

Let x (t) = Py (t) : The solution for the system y0 (t) = (P�1AP )y (t) is8>><>>:
y01 = �y1

y02 = �y2 + �y3

y03 = ��y2 + �y3

(117)

and the general solution is given by (see the proof of Theorem 0.39 for the general solutions of y2 (t)
and y3 (t)) 8>><>>:

y1 (t) = c1e
�t

y2 (t) = c2e
�t cos �t+ c3e

�t sin �t

y3 (t) = �c2e�t sin �t+ c3e�t cos �t:

(118)
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Hence the general solution x (t) ; t 2 (�1;1) ; to the ODE x0 (t) = Ax (t) is

x (t) = Py (t) = (v1; v2; v3)

0@ c1e
�t

c2e
�t cos �t+ c3e

�t sin �t
�c2e�t sin �t+ c3e�t cos �t

1A
= c1e

�tv1 + c2e
�t [(cos �t) v2 � (sin �t) v3] + c3e�t [(sin �t) v2 + (cos �t) v3] : (119)

The discussion for this case is done. �

Example 0.67 Find the general solution of the system

d

dt

0@ x
y
z

1A =

0@ �3 0 2
1 �1 0
�2 �1 0

1A0@ x
y
z

1A :
Solution:

The characteristic polynomial of the matrix is of the coe¢ cient matrix are������
�3� � 0 2
1 �1� � 0
�2 �1 ��

������ = ��3 � 4�2 � 7�� 6 = � (�+ 2) ��2 + 2�+ 3� :
Hence the eigenvalues are �1 = �2; �2 = �1 +

p
2i; �3 = �1 �

p
2i: To �nd the eigenvector for

� = �2, we solve 8>><>>:
�3x+ 2z = �2x

x� y = �2y

�2x� y = �2z

and we obtain x = 2z; y = �2z: Thus v1 = (2;�2; 1) : To �nd the eigenvector for � = �1 +
p
2i,

we solve 8>>><>>>:
�3x+ 2z =

�
�1 +

p
2i
�
x

x� y =
�
�1 +

p
2i
�
y (same as x =

�p
2i
�
y)

�2x� y =
�
�1 +

p
2i
�
z:

We �rst note that y 6= 0: Otherwise, we will get zero eigenvector. By scaling, we can choose y = 1
and by the equation x =

�p
2i
�
y; we can get x =

p
2i and plug it into the �rst equation to get

�3
p
2i+ 2z =

�
�1 +

p
2i
�p

2i (same as z = �1 +
p
2i).

Hence we get the complex eigenvector

v =

0@ p
2i
1

�1 +
p
2i

1A =

0@ 0
1
�1

1A+ i
0@ p

2
0p
2

1A = v2 + iv3:

So we get v2 = (0; 1;�1) and v3 =
�p
2; 0;

p
2
�
: The general solution is given by

x (t) = c1e
�2tv1 + c2e

�t
h�
cos
p
2t
�
v2 �

�
sin
p
2t
�
v3

i
+ c3e

�t
h�
sin
p
2t
�
v2 +

�
cos
p
2t
�
v3

i
;

where v1; v2; v3 are given in the above. �
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Summary of solving x0 = Ax for A 2 M (3) with repeated real eigenvalues (read this
section by yourself).

We only focus on the following three more di¢ cult cases.

(1) : Assume A has three real eigenvalues �; �; �; where � 6= �; and dimker (A� �I) = 1:

First solve (A� �I) v1 = 0; v1 6= 0; and (A� �I) v2 = 0; v2 6= 0. In this case, we have

K = ker (A� �I) � R = Im (A� �I) ; dimK = 1; dimR = 2 (120)

one can �nd v3 2 R3 satisfying

(A� �I) v3 = v2; where v2 2 K � R:

These three vectors v1; v2; v3 will automatically form a basis in R3 and the general solution
formula is given by

x (t) = c1e
�tv1 + c2e

�tv2 + c3e
�t (tv2 + v3) ; (121)

where c1; c2; c3 are arbitrary constants.

Remark 0.68 Conclusion: dimK = 1; dimR = 2; K � R; and8>><>>:
(A� �I) v1 = 0;

(A� �I) v2 = 0; v2 2 K � R

(A� �I) v3 = v2; v3 2 R3:

(122)

The Jordan canonical form is 0@ � 0 0
0 � 1
0 0 �

1A : (123)

(2) : Assume A has three real eigenvalues �; �; �; and dimker (A� �I) = 2:

In this case, we have

R = Im (A� �I) � K = ker (A� �I) ; dimR = 1; dimK = 2: (124)

We then �nd nonzero vectors v1; v2 in K = ker (A� �I) with v1 =2 R � K; v2 2 R � K (this step
is crucial !!) satisfying (A� �I) v1 = 0 and (A� �I) v2 = 0: Since v2 2 R; one can �nd v3 2 R3
satisfying

(A� �I) v3 = v2 2 R � K: (125)

These three vectors v1; v2; v3 will automatically form a basis in R3 and the general solution
formula is given by

x (t) = c1e
�tv1 + c2e

�tv2 + c3e
�t (tv2 + v3) ; (126)

where c1; c2; c3 are arbitrary constants.

Remark 0.69 Conclusion: dimR = 1; dimK = 2; R � K; and8>><>>:
(A� �I) v1 = 0; v1 2 K; v1 =2 R

(A� �I) v2 = 0; v2 2 K; v2 2 R

(A� �I) v3 = v2; v3 2 R3:

(127)

The Jordan canonical form is 0@ � 0 0
0 � 1
0 0 �

1A : (128)
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(3) : Assume A has three real eigenvalues �; �; �; and dimker (A� �I) = 1:

In this case, we have

K = ker (A� �I) � R = Im (A� �I) ; dimK = 1; dimR = 2; (A� �I)R = K: (129)

We �rst solve (A� �I) v1 = 0; v1 2 K: Then by (A� �I)R = K; we can solve

(A� �I) v2 = v1; v1 2 K:

The solution v2 will automatically satisfy v2 2 R; v2 =2 K: Since v2 2 R; one can �nd v3 2 R3
satisfying

(A� �I) v3 = v2 2 R; v2 =2 K:
These three vectors v1; v2; v3 will automatically form a basis in R3 and the general solution
formula is given by

x (t) = c1e
�tv1 + c2e

�t (tv1 + v2) + c3e
�t

�
t2

2
v1 + tv2 + v3

�
; (130)

where c1; c2; c3 are arbitrary constants.

Remark 0.70 Conclusion: dimK = 1; dimR = 2; K � R; and8>><>>:
(A� �I) v1 = 0; v1 2 R; v1 2 K

(A� �I) v2 = v1; v2 2 R; v2 =2 K

(A� �I) v3 = v2; v3 2 R3:

(131)

The Jordan canonical form is 0@ � 1 0
0 � 1
0 0 �

1A : (132)

Some facts from linear algebra and its applications to ODE.

In this section, we review some useful facts from linear algebra. They play important roles in the
ODE x0 = Ax; where now A 2M (n) is an n� n real matrix.

De�nition 0.71 A matrix A 2 M (n) is called symmetric if it satis�es AT = A: If it satis�es
AT = �A; we say it is anti-symmetric.

The following fact is interesting in Linear Algebra:

Lemma 0.72 Any matrix A 2 M (n) can be decomposed as A = B + C; where B 2 M (n) is a
symmetric matrix and C 2M (n) is an anti-symmetric matrix.

Remark 0.73 Unfortunately, Lemma 0.72 does not help us too much in solving the equation x0 (t) =
Ax (t) for general A 2 M (n) : However, if A is symmetric or anti-symmetric, the system x0 (t) =
Ax (t) has special interesting properties.

Proof. We have

A =
A+ AT

2
+
A� AT
2

:= B + C:

Then B is symmetric and C is anti-symmetric. �

A very important property for symmetric matrices is the following:
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Lemma 0.74 If A 2M (n) is a symmetric matrix (i.e. AT = A), then

1. All eigenvalues of are real, i.e. it has n real eigenvalues �1; ::: �n (some may be repeated).

2. One can �nd n orthonormal eigenvectors v1; v2; :::; vn 2 Rn for these eigenvalues �1; �2; :::; �n:

3. Let P = (v1; :::; vn) : Then P is an orthogonal matrix with P TP = I (i.e. P T = P�1) and
we have

P�1AP = P TAP = diag (�1; �2; :::; �n) : (133)

The above says that an n� n symmetric matrix can always be diagonalized.

Proof. We will omit it (the proof is actually quite straightforward). See any linear algebra
textbook. �
A consequence of the above lemma is:

Corollary 0.75 Assume that A 2 M (n) is symmetric. Then any solution x (t) to the equation
x0 = Ax has the form

x (t) = c1e
�1tv1 + � � �+ cne�ntvn; t 2 (�1;1) ; (134)

where c1; :::; cn 2 R are arbitrary constants and �1; :::; �n 2 R are the n eigenvalues of A; and
v1; :::; vn are their corresponding eigenvectors, which can be chosen to form an orthonormal basis
of Rn: In particular, we have

jx (t)j =
q
(c1e�1t)

2 + � � �+ (cne�nt)2; t 2 (�1;1) : (135)

Another important result is the following:

Lemma 0.76 If A 2M (n) is an n� n anti-symmetric matrix (i.e. AT = �A), then

1. All diagonal elements of A are 0: In particular, TrA = 0:

2. All eigenvalues of A are either 0 or pure imaginary.

Remark 0.77 If A 2M (n) is anti-symmetric, then A2 is symmetric.

Remark 0.78 Assume A 2 M (n) is anti-symmetric and Av = 0 for some v 6= 0 2 Rn (i.e. v is
eigenvector with eigenvalue � = 0). Then for all w 2 Rn; we have hAw; vi = 0: This is due to

hAw; vi =


w;ATv

�
= hw;�Avi = hw; 0i = 0: (136)

Remark 0.79 In particular, if A 2 M (2) is a nonzero matrix, then its two eigenvalues have the
form �1 = �i; �2 = ��i for some � > 0: This is because A has the form

A =

�
0 �
�� 0

�
; � 6= 0:

Proof. (1) is clear. For (2) ; let � 2 R be a real eigenvalue. Then there exists some nonzero v 2 Rn
such that Av = �v: Hence

� jvj2 = h�v; viRn = hAv; viRn =


v; ATv

�
Rn = hv;�AviRn = hv;��viRn = �hv; �viRn = �� jvj

2 ;

which implies that � = 0: Here h�; �i denotes the standard inner product on Rn:
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On the other hand, if � is a complex eigenvalue, then there exists some nonzero complex
vector v 2 Cn such that Av = �v: Using complex inner product h�; �iC (see Remark 0.81 below)
we have

hAv; viC =
D
v; ATv

E
C

and so (note that A is a real matrix and so AT = AT = �A)

� jvj2 = h�v; viC = hAv; viC =
D
v; ATv

E
C
=


v; ATv

�
C = hv;�AviC = �hv; �viC = ��� jvj

2

and so � = ���: Thus � is pure imaginary. The proof is done. �

Remark 0.80 (Linear algebra fact.) Let h�; �i denote the standard inner product on Rn and we
have A = (aij)1�i;j�n 2M (n) : Then for any two vectors u; w 2 Rn; we have the identity

hAu;wi =


u;ATw

�
: (137)

To see this, since h�; �i : Rn � Rn ! R is a bilinear map, it su¢ ces to verify the identity

hAei; eji =


ei; A

T ej
�
; 1 � i; j � n; (138)

where fe1; ::: ; eng is the standard basis of Rn: However, (138) is clear since we have

hAei; eji =


ei; A

T ej
�
= aij; 1 � i; j � n: (139)

Remark 0.81 The (standard) complex inner product h�; �iCn between two complex vectors v =
(v1; ::: ; vn) ; w = (w1; ::: ; wn) 2 Cn; is de�ned as

hv; wiCn =
nX
i=1

vi �wi 2 C; �wi is the complex conjugate of wi: (140)

Note that under this de�nition, we have

hw; viCn = hv; wiCn ; hv; viCn = jvj
2 � 0; 8 v 2 Cn (141)

and
h�v; viCn = � jvj

2 ; hv; �viCn = �� jvj
2 ; � 2 C: (142)

Let C (n) denote the space of all n� n complex matrices. Using the above de�nition, one can
check the identity

hAv;wiCn =
D
v; ATw

E
Cn

for any A 2 C (n) ; v; w 2 Cn:

For simplicity, you can look at the case n = 2 and use a 2� 2 complex matrix A to verify it.

Application of lemma 0.76 to ODE is the following:

Lemma 0.82 (Preserving inner product.) Assume that A is an n � n anti-symmetric real
matrix. Then for any two solutions x(1) (t) ; x(2) (t) 2 Rn to the linear system of equations

x0 (t) = Ax (t) ; A 2M (n) ; x (t) 2 Rn; t 2 (�1;1) ; (143)

their inner product


x(1) (t) ;x(2) (t)

�
is independent of time. In particular, if x (t) is a solution

of (143), its length jx (t)j is a constant for all t 2 (�1;1) :
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Proof. By

d

dt



x(1) (t) ;x(2) (t)

�
=


Ax(1) (t) ;x(2) (t)

�
+


x(1) (t) ; Ax(2) (t)

�
=


x(1) (t) ;

�
AT + A

�
x(2) (t)

�
= 0;

the conclusion is proved. �

Example 0.83 (Important.) Assume that A is a 3 � 3 anti-symmetric nonzero real matrix,
given by

A =

0@ 0 a b
�a 0 c
�b �c 0

1A 2M (3) ; detA = 0: (144)

We know its eigenvalues are 0; ��i; where � =
p
a2 + b2 + c2 > 0: Denote the eigenvector corre-

sponding to 0 as v and denote the complex eigenvector corresponding to �i as u+ iw; u 6= 0; w 6=
0 2 R3: We have

Av = 0; Au = ��w; Aw = �u (145)

and the Jordan canonical form of A is

P�1AP = J =

0@ 0 0 0
0 0 �
0 �� 0

1A ; P = (v; u; w) 2M (3) :

The general solution x (t) of the equation x0 (t) = Ax (t) is given by (denote the eigenvector corre-
sponding to 0 as v)

x (t) = c1v + c2 [(cos �t)u� (sin �t)w] + c3 [(sin �t)u+ (cos �t)w] ; (146)

where c1; c2; c3 are arbitrary constants. In particular, we get the following three real solutions8>><>>:
x(1) (t) = v;

x(2) (t) = (cos �t)u� (sin �t)w;

x(3) (t) = (sin �t)u+ (cos �t)w; t 2 (�1;1) :

Since the inner product

x(1) (t) ;x(2) (t)

�
= (cos �t) hv; ui � (sin �t) hv; wi ; � > 0

is independent of time, we must have

hv; ui = hv; wi = 0: (147)

Also, since the inner product

x(2) (t) ;x(3) (t)

�
= h(cos �t)u� (sin �t)w; (sin �t)u+ (cos �t)wi

= (cos �t) (sin �t) [hu; ui � hw;wi] +
�
(cos �t)2 � (sin �t)2

�
hu;wi

is independent of time, we must have

hu; ui = hw;wi ; hu;wi = 0: (148)

Therefore, if we choose v; u; w to be unit vectors, then the matrix P = (v; u; w) will have the
property P TP = I; i.e. it is an orthogonal matrix and we have P TAP = J: Note: use (145) to
describe the geometric meaning of the linear map A : R3 ! R3:
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Lemma 0.84 Let A; B be two n�n real matrices with B = (b1; :::; bn) where each bi is a column
vector. Then

det (Ab1; b2; :::; bn)+ det (b1; Ab2; :::; bn)+ � � �+det (b1; b2; :::; Abn) = TrA � detB; (149)

where TrA denotes the trace of A:

Proof. De�ne the map F : Rn � � � � � Rn ! R by

F (b1; b2; :::; bn)

:= det (Ab1; b2; :::; bn) + det (b1; Ab2; :::; bn) + � � �+ det (b1; b2; :::; Abn) :

One can check that F is an alternating multilinear map with F (b1; b2; :::; bn) = 0 if bi = bj
for some i 6= j (explain this). Similarly, the map

G (b1; b2; :::; bn) := TrA � detB = TrA � det (b1; :::; bn)

is also an alternating multilinear map with G (b1; b2; :::; bn) = 0 if bi = bj for some i 6=
j:Hence it su¢ ces to check that the identity (149) holds for the caseB = (e1; :::; en) ; where fe1; :::; eng is
the standard basis ofRn: In such a case, we have (use cancellation to explain why we have F (e1; :::; en) =
TrA)

F (e1; :::; en) = G (e1; :::; en) = TrA:

The proof is done. �

Example 0.85 We look at the simple case when n = 2: Let A 2 M (2) be a �xed matrix. De�ne
F : R2 � R2 ! R by the following:

F (b1;b2) = det (Ab1;b2) + det (b1; Ab2) ; b1 2 R2; b2 2 R2:

It is a bilinear map, satisfying8>><>>:
F (b2;b1) = det (Ab2;b1) + det (b2; Ab1) = �F (b1;b2) (alternating), 8 b1 2 R2; b2 2 R2

F (b;b) = det (Ab;b) + det (b; Ab) = 0; 8 b 2 R2

F (e1; e2) = det (Ae1; e2) + det (e1; Ae2) = TrA:

Lemma 0.86 Let t 2 I (some interval) and let A (t) = (a1 (t) ; a2 (t) ; :::; an (t)) be an invertible
time-dependent n� n real matrix, where each ai (t) is a column vector. Then we have the identity

d

dt
detA (t)

= Tr

�
(A (t))�1

dA

dt
(t)

�
detA (t) = Tr

��
dA

dt
(t)

�
(A (t))�1

�
detA (t) ; t 2 I; (150)

where (dA=dt) (t) is de�ned as

dA

dt
(t) = (a01 (t) ; a

0
2 (t) ; :::; a

0
n (t)) ; t 2 I: (151)

Remark 0.87 Note that for any two matrices M; N 2 M (n) ; we have Tr (MN) = Tr (NM).
However, be careful that although we have

det (MN) = detM � detN;

we do not have
Tr (MN) = TrM � TrN

in general.
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Proof. This is a consequence of the previous lemma. Write A (t) = (a1 (t) ; a2 (t) ; :::; an (t)) ; where
ai (t) are column vectors. Then

d

dt
detA (t)

= det (a01 (t) ; a2 (t) ; :::; an (t)) + det (a1 (t) ; a
0
2 (t) ; :::; an (t)) + � � �+ det (a1 (t) ; a2 (t) ; :::; a0n (t))

and we note that

A0 (t) =
dA

dt
(t) = (a01 (t) ; a

0
2 (t) ; :::; a

0
n (t))

and if we let P (t) = A0 (t) (A (t))�1 (P (t) is the multiplication of two matrices), then (in the
following we denote the standard basis of Rn as fe1; e2; :::; eng)

P (t) a1 (t) =
�
A0 (t) (A (t))�1

�
a1 (t) = A

0 (t)
�
(A (t))�1 a1 (t)

�
= A0 (t) e1 = a

0
1 (t)

and similarly

P (t) a2 (t) =
�
A0 (t) (A (t))�1

�
a2 (t) = A

0 (t)
�
(A (t))�1 a2 (t)

�
= A0 (t) e2 = a

0
2 (t) ; etc:

Hence, by Lemma 0.84, we have

d

dt
detA (t)

=

(
det (P (t) a1 (t) ; a2 (t) ; :::; an (t)) + det (a1 (t) ; P (t) a2 (t) ; :::; an (t))

+ � � �+det (a1 (t) ; a2 (t) ; :::; P (t) an (t))
= Tr (P (t)) detA (t) = Tr

�
A0 (t) (A (t))�1

�
detA (t) = Tr

�
(A (t))�1A0 (t)

�
detA (t) : (152)

The proof is done. �

Remark 0.88 In the last identity of (152), we have used the identity that Tr (AB) = Tr (BA) for
any two matrices A; B 2M (n) :

Application of Lemma 0.84 to ODE is:

Lemma 0.89 Consider the ODE

x0 (t) = Ax (t) ; A 2M (n) ; x (t) 2 Rn; t 2 (�1;1) (153)

with initial conditions x (0) = v1; v2; :::; vn 2 Rn respectively. Denote the corresponding solutions
as

x(1) (t) ; x(2) (t) ; :::; x(n) (t) ; t 2 (�1;1)
respectively and let B (t) be the n� n matrix given by (each x(i) (t) below is a column vector)

B (t) =
�
x(1) (t) ;x(2) (t) ; :::;x(n) (t)

�
2M (n) ; t 2 (�1;1) : (154)

Then we have 8>><>>:
d

dt
B (t) = AB (t) ; B (t) 2M (n) ;

d

dt
detB (t) = (TrA) detB (t) ; detB (t) 2 R; t 2 (�1;1) :

(155)

As a consequence we have

detB (t) = e(TrA)t detB (0) ; B (0) = (v1; v2; :::; vn) 2M (n) : (156)
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In particular, if fv1; v2; :::; vng is a basis of Rn; then we have detB (0) 6= 0 and�
x(1) (t) ;x(2) (t) ; :::;x(n) (t)

	
(157)

is also a basis of Rn for all t 2 (�1;1) : Moreover, for each t 2 (�1;1) ; the volume of the par-
allelepiped spanned by

�
x(1) (t) ;x(2) (t) ; :::;x(n) (t)

	
is the same as the volume of the parallelepiped

spanned by fv1; v2; :::; vng if and only if TrA = 0: In particular, if A 2M (n) is anti-symmetric,
then it is volume-preserving.

Proof. We know that
�
x(1) (t) ;x(2) (t) ; :::;x(n) (t)

	
is a basis of Rn if and only if detB (t) 6=

0; where
B (t) =

�
x(1) (t) ;x(2) (t) ; :::;x(n) (t)

�
2M (n) ; t 2 (�1;1) :

We clearly have the equation B0 (t) = AB (t) ; which, together with Lemma 0.84, implies

d

dt
detB (t)

= det
�
_x(1) (t) ;x(2) (t) ; � � �

�
+ det

�
x(1) (t) ; _x(2) (t) ; � � �

�
+ � � �

=

(
det
�
Ax(1) (t) ; x(2) (t) ; � � �

�
+ det

�
x(1) (t) ; Ax(2) (t) ; � � �

�
+ � � �+det

�
x(1) (t) ; x(2) (t) ; :::; Ax(n) (t)

�
= (TrA) detB (t) ; t 2 (�1;1) ; (158)

which gives
detB (t) = e(TrA)t detB (0) ; 8 t 2 (�1;1) :

Hence the proof of (155) and (156) is done. Moreover, if detB (0) 6= 0; then detB (t) 6= 0 for all
t 2 (�1;1) :
Finally, we note that the volume of the parallelepiped spanned by

�
x(1) (t) ;x(2) (t) ; :::;x(n) (t)

	
is

given by jdetB (t)j ; where

jdetB (t)j =
��e(TrA)t detB (0)�� = e(TrA)t jdetB (0)j ; 8 t 2 (�1;1) :

Hence the volume is unchanged if and only if TrA = 0: �

Remark 0.90 In case we assume that B (t) is invertible for all time, then we can apply formula
(150) to get

d

dt
detB (t) = Tr

 
dB

dt
(t)| {z } � (B (t))�1

!
detB (t) = Tr

�
AB (t)| {z } � (B (t))�1

�
detB (t)

= (TrA) detB (t) ; t 2 (�1;1) ;

which is (155).

As a consequence of Lemma 0.89, we have the following important geometric result (we will
omit its proof):

Theorem 0.91 Consider the ODE

x0 (t) = Ax (t) ; A 2M (n) ; x (t) 2 Rn; t 2 (�1;1) (159)

and view A : Rn ! Rn as a vector �eld on Rn: Let 
 (0) be a domain in Rn with n-dimensional
volume V (0) = vol (
 (0)) : At time t0 2 (�1;1) ; the domain 
 (0) will be carried by the vector
�eld A (along solution curves) and becomes a domain 
 (t0) ; given by


 (t0) = fp 2 Rn : p = x (t0) ; where x (t) satis�es (159) with x (0) 2 
 (0)g : (160)

Then we have

V (t0) = vol (
 (t0)) = e
(TrA)t0vol (
 (0)) = e(TrA)t0V (0) ; 8 t0 2 (�1;1) : (161)
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Thus we can conclude the following result:

Theorem 0.92 Consider the n � n linear system x0 = Ax; where A 2 M (n) and x (t) 2 Rn: We
can view A : Rn ! Rn as a vector �eld on Rn and it will generate a �ow on Rn (every point
x (0) 2 Rn is moved along its trajectory x (t) for t 2 (�1;1)).

1. If TrA > 0; the �ow is volume-increasing (as time is increasing).

2. If TrA = 0; the �ow is volume-preserving (for example, when A is anti-symmetric).

3. If TrA < 0; the �ow is volume-decreasing (as time is increasing).

Remark 0.93 (Be careful.) Assume n = 2: we note that area-preserving does not necessarily
imply length-preserving, which is equivalent to preserving the inner product. Conversely, if
the �ow is length-preserving, then it must be area-preserving. Therefore, if A 2 M (2) is anti-
symmetric, it is length-preserving and so area-preserving. But an area-preserving 2 � 2
linear system is not necessarily anti-symmetric.

Example 0.94 Look at the simple system

x0 = Ax; A =

�
3 0
0 �3

�
; T rA = 0:

Its general solution is given by x (t) = (c1e3t; c2e�3t) : It is area-preserving but not length-preserving.
The unit vector x (0) = (1; 0) under the �ow becomes x (t) = (e3t; 0) ; no longer an unit vector.

Stability and Phase Portrait.

Remark 0.95 Throughout this section, we assume that detA 6= 0; where A 2 M (n) ; unless oth-
erwise stated. Under the assumption detA 6= 0; the only equilibrium solution of the ODE
x0 = Ax is x (t) � 0: If detA = 0; the ODE x0 = Ax will have in�nitely many equilibrium
solutions (any x0 2 kerA will be an equilibrium solution).

Consider the ODE x0 = Ax; where A 2M (n) : In this section, we assume that detA 6= 0 unless
otherwise stated. One can view the linear map A : Rn ! Rn as a vector �eld x ! Ax on Rn.
Since detA 6= 0; the only point x 2 Rn with Ax = 0 is the origin x = 0 = (0; 0; :::; 0) : Hence the
only equilibrium solution of the ODE x0 = Ax is x (t) � 0; t 2 (�1;1) : In some textbook,
the origin x = 0 = (0; 0; :::; 0) (or equilibrium solution x (t) � 0) is also called a singularity of the
vector �eld A : Rn ! Rn or singularity of the ODE x0 = Ax:
The collection of all trajectories (with the direction of motion attached on each tra-

jectory as time is increasing) of solution curves x (t) 2 Rn; t 2 (�1;1) ; of x0 = Ax is called
the phase portrait of the ODE. The background space Rn is called the phase space.
A solution curve x (t) 2 Rn can be viewed as the motion (in the direction of increasing t)

of the particle x (0) in Rn in�uenced by the vector �eld A : Rn ! Rn: By uniqueness of the
solution to ODE with initial condition, di¤erent trajectories will not intersect at all. The
phase portrait of x0 = Ax describes the dynamics (or �ow) of the vector �eld A on Rn.
As we shall see, the most important result is:

Theorem 0.96 (Not precise ...) The "dynamics" of the ODE x0 = Ax is determined essentially
by the sign of the eigenvalues of the matrix A:
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The de�nition of saddle, sink, source for general A 2M (n) ; detA 6= 0; n 2 N:

De�nition 0.97 Assume A 2 M (n) ; detA 6= 0; has n distinct real eigenvalues such that some
of them are positive and some of them are negative, then we say the system x0 = Ax has a saddle
at the origin x = 0; which is the only equilibrium point of the system.

Lemma 0.98 (Properties of a saddle for A 2M (n).) A saddle equilibrium point is unstable,
which means that for any small " > 0; there is a point x0 2 Rn with jx0j < " such that the
trajectory x (t) of the ODE x0 = Ax with x (0) = x0 will take x0 away from the origin x = 0 as
t!1: Moreover, we have limt!1 jx (t)j = +1:

Proof. For any small " > 0; there is an eigenvector v 6= 0 with jvj < " such that Av = �v; � > 0
and the solution x (t) = e�tv; t 2 (�1;1) ; will take x (0) = v away from the origin x = 0 as
t!1: Moreover, we have limt!1 jx (t)j = +1: The proof is done. �

Example 0.99 Consider the linear system

x0 (t) =

�
�1 �3
0 2

�
x (t) ; x (t) =

�
x1 (t)
x2 (t)

�
:

Show that the origin is a saddle and draw its phase portrait.

Solution:

To plot the phase portrait, it is easier to plot it on the y-plane and then come back to x-plane. We
know the relation between x (t) = (x1 (t) ; x2 (t)) and y (t) = (y1 (t) ; y2 (t)) is x (t) = Py (t) : Here
P 2M (2) is a matrix making P�1AP = J (Jordan canonical form).
The eigenvalues of the coe¢ cient matrix are �1 = �1 and �2 = 2 with corresponding eigenvectors v1 =

(1; 0) ; v2 = (�1; 1) : If we let x = Py; P = (v1; v2) ; then in terms of y (t) the system becomes(
y01 (t) = �y1 (t)

y02 (t) = 2y2 (t)

and the phase portrait in the y = (y1; y2) space looks like the following (the general solution for
y (t) is y = (c1e�t; c2e2t) = c1e�te1 + c2e2te2; e1 = (1; 0) ; e2 = (0; 1)):

Picture Here:

By the relation x = Py; the phase portrait in the x = (x1; x2) space looks like the following
(the two perpendicular vectors e1; e2 are mapped onto v1; v2 respectively):

Picture Here:

The general solution x (t) to the system is given by

x (t) = Py (t) = c1e
�tv1 + c2e

2tv2; x (0) = c1v1 + c2v2; v1 = (1; 0) ; v2 = (�1; 1)

c2e
2tv2

and we see that if c2 = 0; we have x (t) ! 0 as t ! 1 (x (t) is now lying on the v1-axis) and
if c2 6= 0; we have jx (t)j ! 1 as t ! 1: Moreover, for c2 6= 0; the asymptotic direction, as
t!1; of the vector x (t) is

lim
t!1

x (t)

jx (t)j =

8<:
v2
jv2j if c2 > 0

� v2
jv2j if c2 < 0:

(162)
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Similarly, if c1 = 0; we have x (t)! 0 as t! �1 (x (t) is now lying on the v2-axis) and if c1 6= 0; we
have jx (t)j ! 1 as t ! �1: Moreover, for c1 6= 0; the asymptotic direction, as t ! �1; of
the vector x (t) is

lim
t!�1

x (t)

jx (t)j =

8<:
v1
jv1j if c1 > 0

� v1
jv1j if c1 < 0:

(163)

The equilibrium point 0 is a saddle point, which is unstable. �

Remark 0.100 In the above example, all trajectories, as t!1; are tangent to either v1-axis (c2 =
0) or v2-axis (c2 6= 0). We note that both v1 and v2 are eigenvectors.

Motivated by the above example, we have the following important result for a linear system:

Lemma 0.101 (Asymptotic directions are eigenvector directions.) Consider the ODE x0 =
Ax where A 2M (n) (detA = 0 is allowed). Assume x (t) is a nonzero solution and it satis�es

lim
t!1

x (t)

jx (t)j = v for some unit vector v 2 Rn: (164)

Then v 6= 0 must be an eigenvector of A: Similarly, if we have

lim
t!�1

x (t)

jx (t)j = w for some unit vector w 2 Rn; (165)

then w 6= 0 must be an eigenvector of A:

Remark 0.102 Since x = 0 is an equilibrium solution of x0 = Ax; we have x (t0) 6= 0 at some
t0 2 (�1;1) if and only if x (t) 6= 0 for all t 2 (�1;1) :

Remark 0.103 Another related result is: Assume x (t) is a nonzero solution of x0 = Ax (detA =
0 is allowed) and it satis�es

lim
t!1

x (t) = p for some p 2 Rn: (166)

Then we must have Ap = 0. That is, the point p 2 Rn must be an equilibrium point of the vector
�eld A : Rn ! Rn: The proof is to use the identity

x (t)� x (0) =
Z t

0

Ax (s) ds =

Z T

0

Ax (s) ds+

Z t

T

Ax (s) ds; 0 < T < t

and let t ! 1 to obtain a contradiction if Ap 6= 0: In particular, if detA 6= 0; then we must have
p = 0:

To prove Lemma 0.101, we �rst need a simple calculus result:

Lemma 0.104 Let x (t) : (�1;1)! Rn be a continuous function satisfying(
(1) :

R1
0
x (s) ds converges (i.e., each component of the integral converges),

(2) : lims!1 x (s) = p 2 Rn.
(167)

Then we must have p = 0:
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Proof. This is a simple exercise. �

Proof of Lemma 0.101:

Let

~x (t) :=
x (t)

jx (t)j ; t 2 (�1;1) ; lim
t!1

~x (t) = v:

We can compute

~x0 (t) =
jx (t)jx0 (t)� x (t) d

dt
jx (t)j

jx (t)j2
=
jx (t)jx0 (t)� x (t) hx(t); x

0(t)i
jx(t)j

jx (t)j2

=
jx (t)jAx (t)� x (t) hx(t); Ax(t)ijx(t)j

jx (t)j2
= A~x (t)� h~x (t) ; A~x (t)i ~x (t) ; t 2 (�1;1)

and get

~x (t)� ~x (0) =
Z t

0

~x0 (s) ds =

Z t

0

[A~x (s)� h~x (s) ; A~x (s)i ~x (s)] ds: (168)

We note that the integral in (168) converges due to

lim
t!1

Z t

0

[A~x (s)� h~x (s) ; A~x (s)i ~x (s)] ds = lim
t!1

(~x (t)� ~x (0)) = v � ~x (0) :

Moreover, the integrand in (168) also converges due to the following

lim
s!1

[A~x (s)� h~x (s) ; A~x (s)i ~x (s)] = Av � hv; Avi v:

Hence Lemma 0.104 can be applied and we conclude

Av � hv; Avi v = 0 (same as Av = hv; Avi v), where v 6= 0:

Therefore the unit vector v 6= 0 must be an eigenvector of A with corresponding eigenvalue
hv; Avi :
The proof for the case (165) is similar. �

De�nition 0.105 Assume A 2M (n) ; detA 6= 0; and all eigenvalues (may be real or complex)
of A have negative real parts, then x = 0 is called a sink. An equilibrium point which is a sink is
"asymptotically stable", which means that all trajectories x (t) tend to 0 as t!1.

Lemma 0.106 (Properties of a sink for A 2M (n).) Let A 2M (n) with detA 6= 0: If x = 0 is
a sink of the n� n system x0 = Ax; then any solution x (t) of the ODE x0 = Ax satis�es

lim
t!1

x (t) = 0: (169)

Also for any solution x (t) to the equation with x (0) 6= 0 we have

lim
t!�1

jx (t)j =1: (170)

Proof. We prove Lemma 0.106 for the case n = 2 only (the proof for the case n = 3 is similar;
however, for the proof of general n 2 N; we need to know the Jordan canonical form of A 2
M (n) ; which is beyond our scope).
By the discussion in Section 0.0.1 (see (16), (39), (50)), we have

x (t) = PJ (t)P�1x0; t 2 (�1;1) ; (171)
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where J (t) has one of the forms:

J (t) =

�
e�t 0
0 e�t

�
or

�
e�t te�t

0 e�t

�
or

�
e�t cos �t e�t sin �t
�e�t sin �t e�t cos �t

�
with � < 0; � < 0 (� = � is possible), � < 0: We see that limt!1 J (t) = 0 (zero matrix). The
proof of the �rst limit is done.
For the second limit, use the identity P�1x (t) = J (t)P�1x (0) and note that

lim
t!�1

����J (t)P�1x (0)| {z }
���� =1 for any x (0) 6= 0;

which implies

lim
t!�1

jx (t)j = lim
t!�1

����P �J (t)P�1x (0)| {z }
����� =1:

The proof is done. �

De�nition 0.107 Assume A 2M (n) ; detA 6= 0; and all eigenvalues (may be real or complex)
of A have positive real parts, then x = 0 is called a source. An equilibrium point which is a source
is unstable (see Lemma 0.98 for its meaning).

Lemma 0.108 (Properties of a source for A 2 M (n).) Let A 2 M (n) with detA 6= 0: If
x = 0 is a source of the n�n system x0 = Ax; then any solution x (t) of the ODE x0 = Ax satis�es

lim
t!�1

x (t) = 0: (172)

Also for any solution x (t) to the equation with x (0) 6= 0 we have

lim
t!1

jx (t)j =1: (173)

Proof. The proof is similar to the previous lemma, we omit it. �

The de�nition of center for A 2M (2) ; detA 6= 0:

From now on, we focus on the case A 2M (2) with detA 6= 0:

De�nition 0.109 Assume A 2M (2) ; detA 6= 0; and all eigenvalues of A are pure imaginary,
then x = 0 is called a center. An equilibrium point which is a center is stable (in the sense that
solutions will not drift away from the origin x = 0 as t!1): However, it is not asymptotically
stable.

Lemma 0.110 (Properties of a center for A 2 M (2) :) Let A 2 M (2) with detA 6= 0: If
x = 0 is a center of the 2� 2 system x0 = Ax; then all solutions x (t) with x (0) 6= 0 are periodic
with period 2�=�; where the eigenvalues of A are �i�; � > 0. Each trajectory�

x (t) 2 R2 : x (0) 6= 0 2 R2; t 2 (�1;1)
	

is a periodic ellipse (with center at the origin 0) in the plane with period 2�=�.

Proof. By (50), the solution x (t) is given by

x (t) = P

�
cos (�t) sin (�t)
� sin (�t) cos (�t)

�
P�1x0; � > 0 (174)
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for some invertible matrix P 2M (2) : If we let P�1x0 = y0; then the trajectory

y (t) =

�
cos (�t) sin (�t)
� sin (�t) cos (�t)

�
y0; t 2 (�1;1)

is a circle (with radius jy0j) in the y-plane. Note that y (t) is a clockwise rotation of y0 by
angle �t. Therefore, the trajectory of y (t) is moving in the clockwise direction, with period
equal to 2�=�: The curve x (t) = Py (t) is now an ellipse (with center at the origin 0) in the
x-plane with period 2�=�: We have the following phase portraits in the x = (x1; x2) space and
the y = (y1; y2) space:

Picture Here:

If detP > 0 (P preserves orientation); x (t) is moving in the clockwise direction and if detP <
0 (P reverses orientation); x (t) is moving in the counterclockwise direction. �

Remark 0.111 There is a fact in plane geometry saying that a nonsingular linear transformation
A : R2 ! R2 maps a circle onto an ellipse. You can look up this fact by google search ...

0.0.5 More on the phase portrait of a sink (or a source) for A 2M (2).

Assume A 2 M (2) ; detA 6= 0: The phase portrait of a sink (all eigenvalues, real or complex,
of A have negative real parts) for a 2 � 2 linear system x0 (t) = Ax (t) can be divided into
four subcases. They are known as focus (trivial case), node, improper node and spiral sink
(di¤erent textbooks may have di¤erent names for these).
Similarly, the phase portrait of a source (all eigenvalues, real or complex, of A have positive

real parts) for a 2 � 2 linear system x0 (t) = Ax (t) can be divided into four subcases. They are
also known as focus (trivial case), node, improper node and spiral source.
For simplicity, in the following, we will discuss the case of a sink only. The discussion for a

source is similar (just reverse the direction of each trajectory x (t)).
We look at one example for each case (except the focus case, which is rather easy). For easier

drawing of the picture, we assume the matrix A is already in the canonical form. If not, then
you have to apply a linear transformation P to the phase portrait in canonical form (remember
that x = Py; where in the y-plane the matrix is in canonical form).

Example 0.112 (A is diagonalizable; the equilibrium point x = 0 is called a node.) Assume
A 2M (2) has the canonical form (diagonalizable)

A =

�
�1 0
0 �2

�
; where �1 < �2 < 0: (175)

Sketch the phase portrait of the equation x0 = Ax:

Remark 0.113 In case A is diagonalizable with �1 = �2 = � < 0; we must have A = �I and each
trajectory is given by

x (t) =
�
c1e

�t; c2e
�t
�
= e�t (c1; c2) ; t 2 (�1;1) :

It is a ray approaching the origin (0; 0) as t!1: In this case, we call the origin a focus.

Solution:

We write the solution as

x (t) =

�
x (t)
y (t)

�
=

�
e�1t 0
0 e�2t

��
c1
c2

�
=

�
c1e

�1t

c2e
�2t

�
; t 2 (�1;1)
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for arbitrary c1 and c2; where x (0) = (c1; c2) : The �rst important observation is that, for c2 6=
0; x (t) = c1e

�1t tends to 0 faster than y (t) = c2e
�2t as t ! 1: Therefore, as t ! 1; the y-

coordinate is dominant (more visible). We will see that, for c2 6= 0; (x (t) ; y (t)) is asymptotically
tangent to the y-axis at the origin (0; 0) as t!1:
For convenience, we focus on the phase portrait on the �rst quadrant and assume c1 >

0; c2 > 0: The trajectory x (t) =
�
c1e

�1t; c2e
�2t
�
! (0; 0) ; (1;1) as t!1; �1 respectively, and

it lies on the graph of the following function for all t 2 (�1;1) :

y = kx�; where k =
c2
c�1
> 0; � =

�2
�1
2 (0; 1) ; (176)

where we have dy=dx = 1 at x = 0: Therefore, (x (t) ; y (t)) is asymptotically tangent to the
y-axis at the origin (0; 0) as t ! 1 (x (t) tends to 0 faster than y (t) as t ! 1). The tangent
vector (x0 (t) ; y0 (t)) =

�
c1�1e

�1t; c2�2e
�2t
�
is pointing in the (�;�) direction and it has positive

slope

m (t) =
c2�2e

�2t

c1�1e�1t
> 0; 8 t 2 (�1;1) :

We see that m (t) ! 0+ as t ! �1 and m (t) ! 1 as t ! 1: As c1; c2 run over all possible
positive numbers, the constant k ranges between 0 and1:That means, by varying the constant
k 2 (0;1) in (176), we can �nd all trajectories (in graph form) of the ODE in the �rst
quadrant. For each ray y = mx; m > 0; in the �rst quadrant, the trajectory x (t) = (x (t) ; y (t)) =�
c1e

�1t; c2e
�2t
�
; x (0) = (c1; c2) ; intersects the ray at a unique time t0, given by

t0 =
1

�2 � �1
log

�
mc1
c2

�
2 (�1;1) :

The phase portrait of the ODE in the other three quadrants are similar to that in
the �rst quadrant. That is, (x (t) ; y (t)) is asymptotically tangent to the y-axis at the origin
(0; 0) as t ! 1: The equilibrium point x = (0; 0) is globally asymptotically stable due to the
fact that ALL trajectories tend to (0; 0) as t!1: We have the following phase portrait:

Picture Here:

The remaining cases are c1 = 0; c2 6= 0 and c1 6= 0; c2 = 0: For these two cases, the trajectory
x (t) either lies on the y-axis or on the x-axis. The only two trajectories x (t) in R2 which will not
tangent to the y-axis as t!1 is the case when c2 = 0 (but with c1 > 0 or c1 < 0). �

Remark 0.114 The matrix A in (175) has two independent eigenvectors v1 = (1; 0) and v2 =
(0; 1) : All trajectories x (t) in R2 tend to the origin (0; 0) and tangent to either the x-axis
(v1-axis) or the y-axis (v2-axis) as t!1:

Remark 0.115 For the general case, if A has two eigenvalues �1 < �2 < 0 with corresponding
eigenvectors v1; v2; then since it is diagonalizable, the general solution is given by

x (t) = c1e
�1tv1 + c2e

�2tv2; �1 < �2 < 0;

where fv1; v2g is a basis of R2: Due to �1 < �2 < 0; for c2 6= 0; c1e�1tv1 will tend to zero faster than
c2e

�2tv2: Hence, for c2 6= 0; x (t) is asymptotically tangent to the v2-axis at the origin (0; 0) as
t!1: For c2 = 0; x (t) lies on the v1-axis and tends to (0; 0) as t!1:

Example 0.116 (A is not diagonalizable; the equilibrium point x = 0 is called an improper
node.) Assume A 2M (2) has the canonical form

A =

�
� 1
0 �

�
; �1 = �2 = � < 0: (177)

Sketch the phase portrait of the equation x0 = Ax:
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Solution:

There is only one independent eigenvector v1 = (1; 0) for the matrix A: The general solution
is given by

x (t) =

�
x (t)
y (t)

�
=

�
e�t te�t

0 e�t

��
c1
c2

�
=

�
(c1 + c2t) e

�t

c2e
�t

�
; � < 0; t 2 (�1;1)

with x (t) ! (0; 0) as t ! 1 for any initial data x0 = (c1; c2) 2 R2: We see that, regardless of
the values of c2; y (t) = c2e�t tends to 0 faster than x (t) = (c1 + c2t) e�t as t!1: Therefore, as
t!1; the x-coordinate is dominant and (x (t) ; y (t)) is asymptotically tangent to the x-axis at
the origin (0; 0) as t!1; i.e., tangent to the eigenvector axis as t!1.

Case 1: c2 > 0 (regardless of the sign of c1):

We now have
y (t) = c2e

�t > 0; 8 t 2 (�1;1) ; � < 0

and see that y (t) is always decreasing. As for x (t) ; it will become positive eventually with

x (t) = (c1 + c2t) e
�t =

8><>:
negative if t 2

�
�1;� c1

c2

�
positive if t 2

�
� c1
c2
;1
�
:

For each ray y = mx; m > 0; in the �rst quadrant, the trajectory (x (t) ; y (t)) =
�
(c1 + c2t) e

�t; c2e
�t
�

intersects it at a unique time t0; given by

t0 =
1

m
� c1
c2
> �c1

c2
; m > 0; x (t0) > 0:

By the above discussion, we can draw the phase portrait of the system for c2 > 0; given by the
following (all trajectories are tangent to the x-axis as t!1 through the �rst quadrant)

Picture Here:

Motivated by (176), for the entire trajectory (i.e. for all t 2 (�1;1)), one can express x as a
function of y = c2e�t as

x = (c1 + c2t) � e�t =
�
c1 + c2

�
1

�
log

y

c2

��
� y
c2

=
c1
c2
y +

y

�
log

�
y

c2

�
; t =

1

�
log

y

c2
;

and get
dx

dy

����
y=0

=

�
c1
c2
+
1

�
+
1

�
log

�
y

c2

������
y=0

=1:

By this, we see that the trajectory is tangent to the x-axis as t ! 1: On the other hand, for the
entire trajectory (i.e. for all t 2 (�1;1)), y cannot be expressed as a function of x:

Case 2: c2 < 0 (regardless of the sign of c1).

The discussion is similar to that for Case 1. All trajectories are tangent to the x-axis as
t!1 through the third quadrant. We omit it. The phase portrait of the system for c2 < 0 is
given by the following

Picture Here:
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Case 3: c2 = 0 (but c1 6= 0).

In this case, we have

x (t) =
�
c1e

�t; 0
�
; t 2 (�1;1) ; � < 0:

The trajectory lies on the x-axis and tends to (0; 0) as t ! 1: The phase portrait of the system
for c2 = 0 is given by the following

Picture Here:

In conclusion, the phase portrait of the system on the whole plane is given by:

Picture Here:

�

Remark 0.117 The matrix A in (177) has only one independent eigenvector v1 = (1; 0) ; hence
all trajectories in R2 tend to the origin (0; 0) and tangent to the x-axis (v1-axis) as t ! 1:
Compare with Remark 0.114.

Remark 0.118 For the general case (i.e. A has two repeated eigenvalues � < 0 and is not diago-
nalizable), the solution is given by

x (t) = c1e
�tv1 + c2e

�t (tv1 + v2)

= e�t [c1v1 + c2 (tv1 + v2)] ; t 2 (�1;1) ; � < 0;

where Av1 = �v1; Av2 = �v2 + v1: From it one can see that all trajectories tend to the origin
(0; 0) and tangent to the v1-axis as t!1 (can you see this ?).

Example 0.119 (The equilibrium point x = 0 is called a spiral sink.) Assume A 2M (2) has the
canonical form (with complex eigenvalues �� i�; � < 0; � > 0)

A =

�
� �
�� �

�
; � < 0; � > 0:

Sketch the phase portrait of the equation x0 = Ax:

Solution:

The general solution is given by

x (t) =

�
e�t cos (�t) e�t sin (�t)
�e�t sin (�t) e�t cos (�t)

�
x0

= e�t
�
cos (�t) sin (�t)
� sin (�t) cos (�t)

�
x0; � < 0; � > 0

and so x (t)! 0 as t!1 for any initial data x0 = (c1; c2) 2 R2: Note that the e¤ect of the matrix�
cos (�t) sin (�t)
� sin (�t) cos (�t)

�
; � > 0

is rotation in the clockwise direction (as time is increasing). The phase portrait is given by

Picture Here:

�
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Using trace and determinant to determine the phase portrait of x0 = Ax; where A 2
M (2) ; detA 6= 0:

Let A 2 M (2) with detA 6= 0: The only equilibrium point of the system x0 = Ax is x = 0: The
characteristic equation for the eigenvalues � of A is given by

�2 � (TrA)�+ detA = 0; � =
TrA�

q
(TrA)2 � 4 detA
2

: (178)

Hence one can use the values of TrA = �1 + �2 and detA = �1�2 to determine the phase portrait
of the system. We �rst note that we have

(TrA)2 � 4 detA = (�1 + �2)2 � 4�1�2 = (�1 � �2)2 : (179)

Note that if

A =

�
a b
c d

�
;

then 8>><>>:
TrA = �1 + �2 = a+ d

detA = �1�2 = ad� bc

(TrA)2 � 4 detA = (�1 � �2)2 = (a+ d)2 � 4 (ad� bc) = (a� d)2 + 4bc:

(180)

Remark 0.120 By the third identity in (180), if bc � 0; then it is impossible to have complex
conjugate eigenvalues.

If we want to use TrA and detA to determine the phase portrait of x0 = Ax; where A 2
M (2) ; detA 6= 0; the most useful one is the following:

Lemma 0.121 (The case when detA < 0:) Let A 2 M (2) with detA 6= 0. The equation
x0 = Ax has detA < 0 if and only if we have a saddle at x = 0.

Remark 0.122 There is no de�nite relation between a saddle at x = 0 and the value of TrA:

Proof. This is clear due to the identity detA = �1�2: If x = 0 is a saddle, by de�nition, we must
have �1 > 0 and �2 < 0 and so detA < 0: Conversely, if detA = �1�2 < 0; then �1 and �2 cannot be
complex conjugate and they must be real numbers with di¤erent signs. Hence x = 0 is a saddle.�

Next, we note the following:

Lemma 0.123 Let A 2M (2) with detA 6= 0: The two eigenvalues �1; �2 of A are:

1. Real and distinct if (TrA)2 � 4 detA > 0:

2. Real and repeated if (TrA)2 � 4 detA = 0:

3. Complex conjugate if (TrA)2 � 4 detA < 0:

Proof. This is obvious. �

Lemma 0.124 (The case when (TrA)2�4 detA > 0:) Let A 2M (2) with detA 6= 0: If (TrA)2�
4 detA > 0; then �1 6= �2 are real and distinct and we have the following three cases for the
equilibrium point x = 0 of the ODE x0 = Ax :
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1. If detA = �1�2 > 0 and TrA > 0; then �1 > 0; �2 > 0; and we have a source (which is a
node) (unstable).

2. If detA = �1�2 > 0 and TrA < 0; then �1 < 0; �2 < 0; and we have a sink (which is a node)
(asymptotically stable).

3. If detA = �1�2 < 0 (regardless of the sign of TrA), then one eigenvalue is positive, one
eigenvalue is negative, and we have a saddle (unstable).

Remark 0.125 In Case 3 of the above, it is possible to have TrA = 0:

Proof. This is obvious. �

Lemma 0.126 (The case when (TrA)2�4 detA = 0:) Let A 2M (2) with detA 6= 0: If (TrA)2�
4 detA = 0; we have �1 = �2 = (TrA) =2 and we have the following two cases for the equilibrium
point x = 0 of the ODE x0 = Ax :

1. If TrA > 0; we have a source (which is either a focus, i.e. A = �I; or an improper node)
(unstable).

2. If TrA < 0; we have a sink (which is either a focus, i.e. A = �I; or an improper node)
(asymptotically stable).

Remark 0.127 (Be careful.) Note that one cannot use the conditions (TrA)2 � 4 detA = 0
and TrA < 0 to distinguish between focus and improper node. The following two matrices

A =

�
� 0
0 �

�
; A =

�
� 1
0 �

�
; � < 0

have the same trace and determinant, but one is a focus and the other is an improper node.

Proof. This is obvious. �

Lemma 0.128 (The case when (TrA)2�4 detA < 0:) Let A 2M (2) with detA 6= 0: If (TrA)2�
4 detA < 0, we have the following three cases for the equilibrium point x = 0 of the ODE x0 = Ax :

1. If TrA > 0; we have a spiral source (unstable).

2. If TrA < 0; we have a spiral sink (asymptotically stable).

3. If TrA = 0; we have a center (stable).

Proof. This is obvious. �

Example 0.129 Let A 2M (2) : Determine the nature of the equilibrium point x = 0 of the ODE
x0 = Ax for each of the following cases:8>>>>><>>>>>:

(1) : detA < 0;

(2) : detA > 0; T rA > 0;

(3) : detA > 0; T rA < 0;

(4) : detA > 0; T rA = 0:
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Solution:

For (1) ; x = 0 is a saddle.

For (2) ; by the Jordan canonical form of A; given by�
� 0
0 �

�
;

�
� 1
0 �

�
;

�
� �
�� �

�
; � > 0; (181)

we must have � > 0; � > 0 and � > 0: Hence x = 0 is a source (can be any of the four subcases).

For (3) ; we must have � < 0; � < 0 and � < 0: Hence x = 0 is a sink (can be any of the four
subcases).

For (4) ; the �rst two canonical forms in (181) cannot happen and we must have � = 0 in the
third canonical form. Hence x = 0 is a center. �

0.0.6 Conclusion:

To determine the nature of the equilibrium point x = 0 of the system x0 = Ax, where A 2 M (2) ;
detA 6= 0; we look at the sign of

(TrA)2 � 4 detA
�rst, then look at the signs of TrA and detA:

If we let x = TrA and let y = detA; then on the xy-plane, we have the following picture (also
see the book "Di¤erential Equations, Dynamical Systems, and an Introduction to Chaos" by Hirsch,
Smale, Devaney, p. 63):

Picture Here:

End of the Third Part of the Course, 2023-1-5
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